tensorflow(三十九):实战——深度残差网络ResNet18

2021-05-07 05:26

阅读:508

标签:cat   apply   imp   equal   conv2   ase   from   mic   seq   

一、基础

技术图片

 

 技术图片

 

 技术图片

 

 技术图片

 

 技术图片

 

 技术图片

 

 二、ResNet18

import  tensorflow as tf
from    tensorflow import keras
from    tensorflow.keras import layers, Sequential



class BasicBlock(layers.Layer):

    def __init__(self, filter_num, stride=1):
        super(BasicBlock, self).__init__()

        self.conv1 = layers.Conv2D(filter_num, (3, 3), strides=stride, padding=same)
        self.bn1 = layers.BatchNormalization()
        self.relu = layers.Activation(relu)

        self.conv2 = layers.Conv2D(filter_num, (3, 3), strides=1, padding=same)
        self.bn2 = layers.BatchNormalization()

        if stride != 1:
            self.downsample = Sequential()
            self.downsample.add(layers.Conv2D(filter_num, (1, 1), strides=stride))
        else:
            self.downsample = lambda x:x



    def call(self, inputs, training=None):

        # [b, h, w, c]
        out = self.conv1(inputs)
        out = self.bn1(out,training=training)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out,training=training)

        identity = self.downsample(inputs)

        output = layers.add([out, identity])
        output = tf.nn.relu(output)

        return output


class ResNet(keras.Model):


    def __init__(self, layer_dims, num_classes=100): # [2, 2, 2, 2]
        super(ResNet, self).__init__()

        self.stem = Sequential([layers.Conv2D(64, (3, 3), strides=(1, 1)),
                                layers.BatchNormalization(),
                                layers.Activation(relu),
                                layers.MaxPool2D(pool_size=(2, 2), strides=(1, 1), padding=same)
                                ])

        self.layer1 = self.build_resblock(64,  layer_dims[0])
        self.layer2 = self.build_resblock(128, layer_dims[1], stride=2)
        self.layer3 = self.build_resblock(256, layer_dims[2], stride=2)
        self.layer4 = self.build_resblock(512, layer_dims[3], stride=2)

        # output: [b, 512, h, w],
        self.avgpool = layers.GlobalAveragePooling2D()
        self.fc = layers.Dense(num_classes)





    def call(self, inputs, training=None):

        x = self.stem(inputs,training=training)

        x = self.layer1(x,training=training)
        x = self.layer2(x,training=training)
        x = self.layer3(x,training=training)
        x = self.layer4(x,training=training)

        # [b, c]
        x = self.avgpool(x)
        # [b, 100]
        x = self.fc(x)

        return x



    def build_resblock(self, filter_num, blocks, stride=1):

        res_blocks = Sequential()
        # may down sample
        res_blocks.add(BasicBlock(filter_num, stride))

        for _ in range(1, blocks):
            res_blocks.add(BasicBlock(filter_num, stride=1))

        return res_blocks


def resnet18():
    return ResNet([2, 2, 2, 2])


def resnet34():
    return ResNet([3, 4, 6, 3])

三、train

import  os
os.environ[TF_CPP_MIN_LOG_LEVEL]=2

import  tensorflow as tf
from    tensorflow.keras import layers, optimizers, datasets, Sequential 
from    resnet import resnet18 

tf.random.set_seed(2345)





def preprocess(x, y):
    # [-1~1]
    x = tf.cast(x, dtype=tf.float32) / 255. - 0.5
    y = tf.cast(y, dtype=tf.int32)
    return x,y


(x,y), (x_test, y_test) = datasets.cifar100.load_data()
y = tf.squeeze(y, axis=1)
y_test = tf.squeeze(y_test, axis=1)
print(x.shape, y.shape, x_test.shape, y_test.shape)


train_db = tf.data.Dataset.from_tensor_slices((x,y))
train_db = train_db.shuffle(1000).map(preprocess).batch(512)

test_db = tf.data.Dataset.from_tensor_slices((x_test,y_test))
test_db = test_db.map(preprocess).batch(512)

sample = next(iter(train_db))
print(sample:, sample[0].shape, sample[1].shape,
      tf.reduce_min(sample[0]), tf.reduce_max(sample[0]))


def main():

    # [b, 32, 32, 3] => [b, 1, 1, 512]
    model = resnet18()
    model.build(input_shape=(None, 32, 32, 3))
    model.summary()
    optimizer = optimizers.Adam(lr=1e-3)

    for epoch in range(500):

        for step, (x,y) in enumerate(train_db):

            with tf.GradientTape() as tape:
                # [b, 32, 32, 3] => [b, 100]
                logits = model(x,training=True)
                # [b] => [b, 100]
                y_onehot = tf.one_hot(y, depth=100)
                # compute loss
                loss = tf.losses.categorical_crossentropy(y_onehot, logits, from_logits=True)
                loss = tf.reduce_mean(loss)

            grads = tape.gradient(loss, model.trainable_variables)
            optimizer.apply_gradients(zip(grads, model.trainable_variables))

            if step %50 == 0:
                print(epoch, step, loss:, float(loss))



        total_num = 0
        total_correct = 0
        for x,y in test_db:

            logits = model(x,training=False)
            prob = tf.nn.softmax(logits, axis=1)
            pred = tf.argmax(prob, axis=1)
            pred = tf.cast(pred, dtype=tf.int32)

            correct = tf.cast(tf.equal(pred, y), dtype=tf.int32)
            correct = tf.reduce_sum(correct)

            total_num += x.shape[0]
            total_correct += int(correct)

        acc = total_correct / total_num
        print(epoch, acc:, acc)



if __name__ == __main__:
    main()

 

tensorflow(三十九):实战——深度残差网络ResNet18

标签:cat   apply   imp   equal   conv2   ase   from   mic   seq   

原文地址:https://www.cnblogs.com/zhangxianrong/p/14725992.html

上一篇:python学习第40天

下一篇:HTML


评论


亲,登录后才可以留言!