Keras猫狗大战八:resnet50预训练模型迁移学习,图片先做归一化预处理,精度提高到97.5%
2021-05-13 00:27
标签:imp height sha shape 数据 center class use normal 在上一篇的基础上,对数据调用keras图片预处理函数preprocess_input做归一化预处理,进行训练。 导入preprocess_input: 数据生成添加preprocessing_function=preprocess_input 训练25epoch,学习率从1e-3下降到4e-5: 测试结果为97.5%,较前面提高了1.3%: Keras猫狗大战八:resnet50预训练模型迁移学习,图片先做归一化预处理,精度提高到97.5% 标签:imp height sha shape 数据 center class use normal 原文地址:https://www.cnblogs.com/zhengbiqing/p/12003660.htmlimport os
from keras import layers, optimizers, models
from keras.applications.resnet50 import ResNet50, preprocess_input
from keras.layers import *
from keras.models import Model
from keras.preprocessing.image import ImageDataGenerator
batch_size = 64
train_datagen = ImageDataGenerator(
rotation_range=40,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True,
vertical_flip=True,
preprocessing_function=preprocess_input)
test_datagen = ImageDataGenerator(preprocessing_function=preprocess_input)
train_generator = train_datagen.flow_from_directory(
# This is the target directory
train_dir,
# All images will be resized to 150x150
target_size=(150, 150),
batch_size=batch_size,
# Since we use binary_crossentropy loss, we need binary labels
class_mode=‘binary‘)
validation_generator = test_datagen.flow_from_directory(
validation_dir,
target_size=(150, 150),
batch_size=batch_size,
class_mode=‘binary‘)
Epoch 1/100
281/281 [==============================] - 152s 540ms/step - loss: 0.2849 - acc: 0.8846 - lr: 0.0010 - val_loss: 0.1195 - val_acc: 0.9694 - val_lr: 0.0010
Epoch 2/100
281/281 [==============================] - 79s 282ms/step - loss: 0.2234 - acc: 0.9079 - lr: 0.0010 - val_loss: 0.1105 - val_acc: 0.9673 - val_lr: 0.0010
Epoch 3/100
281/281 [==============================] - 80s 285ms/step - loss: 0.2070 - acc: 0.9135 - lr: 0.0010 - val_loss: 0.1061 - val_acc: 0.9716 - val_lr: 0.0010
Epoch 4/100
281/281 [==============================] - 80s 283ms/step - loss: 0.1939 - acc: 0.9203 - lr: 0.0010 - val_loss: 0.0998 - val_acc: 0.9748 - val_lr: 0.0010
Epoch 5/100
......Epoch 22/100
281/281 [==============================] - 80s 284ms/step - loss: 0.1368 - acc: 0.9470 - lr: 4.0000e-05 - val_loss: 0.0943 - val_acc: 0.9777 - val_lr: 4.0000e-05
Epoch 23/100
281/281 [==============================] - 80s 283ms/step - loss: 0.1346 - acc: 0.9479 - lr: 4.0000e-05 - val_loss: 0.1046 - val_acc: 0.9720 - val_lr: 4.0000e-05
Epoch 24/100
281/281 [==============================] - 79s 283ms/step - loss: 0.1320 - acc: 0.9476 - lr: 4.0000e-05 - val_loss: 0.0938 - val_acc: 0.9759 - val_lr: 4.0000e-05
Epoch 25/100
281/281 [==============================] - 79s 282ms/step - loss: 0.1356 - acc: 0.9476 - lr: 4.0000e-05 - val_loss: 0.1063 - val_acc: 0.9745 - val_lr: 4.0000e-05
在测试图片时也需要进行归一化预处理:def get_input_xy(src=[]):
pre_x = []
true_y = []
class_indices = {‘cat‘: 0, ‘dog‘: 1}
for s in src:
input = cv2.imread(s)
input = cv2.resize(input, (150, 150))
input = cv2.cvtColor(input, cv2.COLOR_BGR2RGB)
pre_x.append(preprocess_input(input))
_, fn = os.path.split(s)
y = class_indices.get(fn[:3])
true_y.append(y)
pre_x = np.array(pre_x)
return pre_x, true_y
def plot_sonfusion_matrix(cm, classes, normalize=False, title=‘Confusion matrix‘, cmap=plt.cm.Blues):
plt.imshow(cm, interpolation=‘nearest‘, cmap=cmap)
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(classes))
print(tick_marks, type(tick_marks))
plt.xticks(tick_marks, classes, rotation=45)
plt.yticks([-0.5,1.5], classes)
print(cm)
ok_num = 0
for k in range(cm.shape[0]):
print(cm[k,k]/np.sum(cm[k,:]))
ok_num += cm[k,k]
print(ok_num/np.sum(cm))
if normalize:
cm = cm.astype(‘float‘) / cm.sum(axis=1)[:, np.newaxis]
thresh = cm.max() / 2.0
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, cm[i, j], horizontalalignment=‘center‘, color=‘white‘ if cm[i, j] > thresh else ‘black‘)
plt.tight_layout()
plt.ylabel(‘True label‘)
plt.xlabel(‘Predict label‘)
[[1225 25]
[ 38 1212]]
0.98
0.9696
0.9748
上一篇:php7格式化输出和普通输出区别
文章标题:Keras猫狗大战八:resnet50预训练模型迁移学习,图片先做归一化预处理,精度提高到97.5%
文章链接:http://soscw.com/index.php/essay/84912.html