10 并发编程-(线程)-GIL全局解释器锁&死锁与递归锁
2021-05-23 19:31
标签:style 语法 fun stop strong join ssi 用户 支持 首先需要明确的一点是GIL并不是Python的特性,它是在实现Python解析器(CPython)时所引入的一个概念。 就好比C++是一套语言(语法)标准,但是可以用不同的编译器来编译成可执行代码。>有名的编译器例如GCC,INTEL C++,Visual C++等。Python也一样,同样一段代码可以通过CPython,PyPy,Psyco等不同的Python执行环境来执行。像其中的JPython就没有GIL。然而因为CPython是大部分环境下默认的Python执行环境。所以在很多人的概念里CPython就是Python,也就想当然的把GIL归结为Python语言的缺陷。 所以这里要先明确一点:GIL并不是Python的特性,Python完全可以不依赖于GIL 2、GIL介绍 GIL本质就是一把互斥锁,既然是互斥锁,所有互斥锁的本质都一样,都是将并发运行变成串行,以此来控制同一时间内共享数据只能被一个任务所修改,进而保证数据安全。 可以肯定的一点是:保护不同的数据的安全,就应该加不同的锁。 要想了解GIL,首先确定一点:每次执行python程序,都会产生一个独立的进程。例如python test.py,python aaa.py,python bbb.py会产生3个不同的python进程 如果多个线程的target=work,那么执行流程是 多个线程先访问到解释器的代码,即拿到执行权限,然后将target的代码交给解释器的代码去执行 机智的同学可能会问到这个问题:Python已经有一个GIL来保证同一时间只能有一个线程来执行了,为什么这里还需要lock? 首先,我们需要达成共识:锁的目的是为了保护共享的数据,同一时间只能有一个线程来修改共享的数据 然后,我们可以得出结论:保护不同的数据就应该加不同的锁。 最后,问题就很明朗了,GIL 与Lock是两把锁,保护的数据不一样,前者是解释器级别的(当然保护的就是解释器级别的数据,比如垃圾回收的数据),后者是保护用户自己开发的应用程序的数据,很明显GIL不负责这件事,只能用户自定义加锁处理,即Lock,如下图 应用: 如果并发的多个任务是计算密集型:多进程效率高 如果并发的多个任务是I/O密集型:多线程效率高 所谓死锁: 是指两个或两个以上的进程或线程在执行过程中,因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去。 此时称系统处于死锁状态或系统产生了死锁,这些永远在互相等待的进程称为死锁进程,如下就是死锁 递归锁:可以连续acquire多次,每acquire一次计数器+1,只有计数为0时,才能被抢到 解决方法,递归锁,在Python中为了支持在同一线程中多次请求同一资源,python提供了可重入锁RLock。 这个RLock内部维护着一个Lock和一个counter变量,counter记录了acquire的次数,从而使得资源可以被多次require。 直到一个线程所有的acquire都被release,其他的线程才能获得资源。 上面的例子如果使用RLock代替Lock,则不会发生死锁,二者的区别是:递归锁可以连续acquire多次,而互斥锁只能acquire一次 10 并发编程-(线程)-GIL全局解释器锁&死锁与递归锁 标签:style 语法 fun stop strong join ssi 用户 支持 原文地址:https://www.cnblogs.com/foremostxl/p/9734439.html一、GIL全局解释器锁
1、引子
在Cpython解释器中,同一个进程下开启的多线程,同一时刻只能有一个线程执行,无法利用多核优势
3、GIL与Lock
1、100个线程去抢GIL锁,即抢执行权限
2、肯定有一个线程先抢到GIL(暂且称为线程1),然后开始执行,一旦执行就会拿到lock.acquire()
3、极有可能线程1还未运行完毕,就有另外一个线程2抢到GIL,然后开始运行,但线程2发现互斥锁lock还未被线程1释放,于是阻塞,被迫交出执行权限,即释放GIL
4、直到线程1重新抢到GIL,开始从上次暂停的位置继续执行,直到正常释放互斥锁lock,然后其他的线程再重复2 3 4的过程
4、GIL与多线程(计算密集型用 多进程 I/O密集型用 多线程)
多线程用于IO密集型,如socket,爬虫,web
多进程用于计算密集型,如金融分析
from multiprocessing import Process
from threading import Thread
import os,time
def work():
res=0
for i in range(100000000):
res*=i
if __name__ == ‘__main__‘:
l=[]
print(os.cpu_count()) #本机为4核
start=time.time()
for i in range(4):
p=Process(target=work) #耗时5s多
p=Thread(target=work) #耗时18s多
l.append(p)
p.start()
for p in l:
p.join()
stop=time.time()
print(‘run time is %s‘ %(stop-start))
#如果并发的多个任务是I/O密集型:多线程效率高
from multiprocessing import Process
from threading import Thread
import threading
import os,time
def work():
time.sleep(2)#类似i/o
# print(‘===>‘)
if __name__ == ‘__main__‘:
l=[]
print(os.cpu_count()) #本机为4核
start=time.time()
for i in range(400):
p=Process(target=work) #耗时14s多,大部分时间耗费在创建进程上,
#p=Thread(target=work) #耗时2s多
l.append(p)
p.start()
for p in l:
p.join()
stop=time.time()
print(‘run time is %s‘ %(stop-start))
二、死锁与递归锁
1、死锁现象
from threading import Thread,Lock
import time
mutexA=Lock()
mutexB=Lock()
class MyThread(Thread):
def run(self):
self.func1()
self.func2()
def func1(self):
mutexA.acquire()
print(‘\033[41m%s 拿到A锁\033[0m‘ %self.name)
mutexB.acquire()
print(‘\033[42m%s 拿到B锁\033[0m‘ %self.name)
mutexB.release()
mutexA.release()
def func2(self):
mutexB.acquire()
print(‘\033[43m%s 拿到B锁\033[0m‘ %self.name)
time.sleep(2)
mutexA.acquire()
print(‘\033[44m%s 拿到A锁\033[0m‘ %self.name)
mutexA.release()
mutexB.release()
if __name__ == ‘__main__‘:
for i in range(10):
t=MyThread()
t.start()
执行效果
Thread-1 拿到A锁
Thread-1 拿到B锁
Thread-1 拿到B锁
Thread-2 拿到A锁 #出现死锁,整个程序阻塞住
Thread-1 拿到B锁后要去拿A锁,但A所在Thread-2手上
Thread-2 拿到A锁后要去拿B锁,但B锁在Thread-1手上
2、死锁的解决办法---递归锁
# 递归锁:可以连续acquire多次,每acquire一次计数器+1,只有计数为0时,才能被抢到acquire
from threading import Thread,RLock
import time
mutexB=mutexA=RLock()
class MyThread(Thread):
def run(self):
self.f1()
self.f2()
def f1(self):
mutexA.acquire()
print(‘%s 拿到了A锁‘ %self.name)
mutexB.acquire()
# 此时acquire 计数器为2
print(‘%s 拿到了B锁‘ %self.name)
mutexB.release()
mutexA.release()
# 此时acquire计数器为0 这样其他的线程才可以抢锁
def f2(self):
mutexB.acquire()
print(‘%s 拿到了B锁‘ % self.name)
time.sleep(1)
mutexA.acquire()
print(‘%s 拿到了A锁‘ % self.name)
mutexA.release()
mutexB.release()
if __name__ == ‘__main__‘:
for i in range(10):
t=MyThread()
t.start()
Thread-1 拿到了A锁
Thread-1 拿到了B锁
Thread-1 拿到了B锁
Thread-1 拿到了A锁
Thread-2 拿到了A锁
Thread-2 拿到了B锁
Thread-2 拿到了B锁
Thread-2 拿到了A锁
Thread-4 拿到了A锁
Thread-4 拿到了B锁
Thread-4 拿到了B锁
Thread-4 拿到了A锁
Thread-6 拿到了A锁
Thread-6 拿到了B锁
Thread-6 拿到了B锁
Thread-6 拿到了A锁
Thread-8 拿到了A锁
Thread-8 拿到了B锁
Thread-8 拿到了B锁
Thread-8 拿到了A锁
Thread-10 拿到了A锁
Thread-10 拿到了B锁
Thread-10 拿到了B锁
Thread-10 拿到了A锁
Thread-5 拿到了A锁
Thread-5 拿到了B锁
Thread-5 拿到了B锁
Thread-5 拿到了A锁
Thread-9 拿到了A锁
Thread-9 拿到了B锁
Thread-9 拿到了B锁
Thread-9 拿到了A锁
Thread-7 拿到了A锁
Thread-7 拿到了B锁
Thread-7 拿到了B锁
Thread-7 拿到了A锁
Thread-3 拿到了A锁
Thread-3 拿到了B锁
Thread-3 拿到了B锁
Thread-3 拿到了A锁
文章标题:10 并发编程-(线程)-GIL全局解释器锁&死锁与递归锁
文章链接:http://soscw.com/index.php/essay/88356.html