实验二 K-近邻算法及应用
2021-05-28 11:04
标签:red named mamicode 取出 k-近邻算法 排序 com 理解 order 1、理解K-近邻算法原理,能实现算法K近邻算法; 1、实现曼哈顿距离、欧氏距离、闵式距离算法,并测试算法正确性。 1、对照实验内容,撰写实验过程、算法及测试结果; 1、 2、 3、 4、 5、 6、 7、 8、 9、 10、 11、 12、 13、 14、 15、 16、 17、 18、 19、 20、 21、 22、 23、 1、 2、 3、 优点 1、python中的文本自动分类 通过这次实验,主要理解K-近邻算法原理,基本实现算法K近邻算法。可以看出K值的选择会对K近邻算法的结果会产生重大影响。其次就是掌握常见的距离度量方法,在度量算法中,主要理解曼哈顿距离、欧氏距离、闵式距离算法。实验发现,K近邻算法一般选择k个最相似数据中出现次数最多的分类,作为新数据的分类。 实验二 K-近邻算法及应用 标签:red named mamicode 取出 k-近邻算法 排序 com 理解 order 原文地址:https://www.cnblogs.com/cwy183/p/14783196.html
班级
机器学习实验-计算机18级
实验内容
K-近邻算法及应用
姓名
程王宇
学号
3180701339
【实验目的】
2、掌握常见的距离度量方法;
3、掌握K近邻树实现算法;
4、针对特定应用场景及数据,能应用K近邻解决实际问题。【实验内容】
2、实现K近邻树算法;
3、针对iris数据集,应用sklearn的K近邻算法进行类别预测。
4、针对iris数据集,编制程序使用K近邻树进行类别预测。【实验报告要求】
2、代码规范化:命名规则、注释;
3、分析核心算法的复杂度;
4、查阅文献,讨论K近邻的优缺点;
5、举例说明K近邻的应用场景。实验结果
实验代码
import math #导入math模块,就可以用模块里面的数学运算的函数
from itertools import combinations
def L(x, y, p=2):
# 两个实例二维特征 x1 = [1, 1], x2 = [5,1]
if len(x) == len(y) and len(x) > 1: # 当两个特征的维数相等时,并且维度大于1时。
sum = 0
for i in range(len(x)):# 用range函数来遍历x所有的维度,x与y的维度相等。
sum += math.pow(abs(x[i] - y[i]), p)
return math.pow(sum, 1/p)
else:
return 0
x1 = [1, 1]
x2 = [5, 1]
x3 = [4, 4]
# x1, x2
for i in range(1, 5):
r = { ‘1-{}‘.format(c):L(x1, c, p=i) for c in [x2, x3]}
# 一条语句循环两次x2、x3,当x2时,当前i产生一个值,当x3时,当前i产生一个值。
print(min(zip(r.values(), r.keys())))
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from collections import Counter
iris = load_iris()#导入库中的数据集
df = pd.DataFrame(iris.data, columns=iris.feature_names)
df[‘label‘] = iris.target#定义实验中包含的鸢尾花的特征属性及其对应标签
df.columns = [‘sepal length‘, ‘sepal width‘, ‘petal length‘, ‘petal width‘, ‘label‘]
# data = np.array(df.iloc[:100, [0, 1, -1]])
df#查看数据集的内容
plt.scatter(df[:50][‘sepal length‘], df[:50][‘sepal width‘], label=‘0‘)
plt.scatter(df[50:100][‘sepal length‘], df[50:100][‘sepal width‘], label=‘1‘)
plt.xlabel(‘sepal length‘)
plt.ylabel(‘sepal width‘)
plt.legend()
data = np.array(df.iloc[:100, [0, 1, -1]])
X, y = data[:,:-1], data[:,-1]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
class KNN:
def __init__(self, X_train, y_train, n_neighbors=3, p=2):
"""
parameter: n_neighbors 临*点个数
parameter: p 距离度量
"""
self.n = n_neighbors
self.p = p
self.X_train = X_train
self.y_train = y_train
def predict(self, X):
# 取出n个点
knn_list = []
for i in range(self.n):
dist = np.linalg.norm(X - self.X_train[i], ord=self.p)
#np.linalg.norm函数
#np.linalg.norm(x, ord=None, axis=None, keepdims=False)
#① x: 表示矩阵(也可以是一维)
#② ord:范数类型
knn_list.append((dist, self.y_train[i]))
for i in range(self.n, len(self.X_train)):# 取从第三个开始往后测试集的所有点。
max_index = knn_list.index(max(knn_list, key=lambda x: x[0]))
# 首先max函数里面选取出 knn_list 里面最大的距离数据
# 然后取出它的索引存在 max_index
dist = np.linalg.norm(X - self.X_train[i], ord=self.p)
# 继续计算待分类点与其他训练集数据的欧式距离
if knn_list[max_index][0] > dist:
knn_list[max_index] = (dist, self.y_train[i])
# 每次循环迭代knn_list的数据 目标是找到距离小的点
# 统计
knn = [k[-1] for k in knn_list]
# 解析列表 把对应的类别放入新的列表
count_pairs = Counter(knn)
# Counter类的目的是用来跟踪值出现的次数。它是一个无序的容器类型,以字典的键值对形式存储,其中元素作为key
max_count = sorted(count_pairs, key=lambda x:x)[-1]
#Lambda()函数
#a = lambda x,y,z:(x+8)*y-z
#print(a(5,6,8))
return max_count
# 最后进行排序 得出出现次数最多的那个类别 作为最终的分类结果。
def score(self, X_test, y_test):
right_count = 0
# 分类正确的次数 初始为 0
n = 10
for X, y in zip(X_test, y_test):
label = self.predict(X)
# print("预测类别为:{}".format(label))
# print("实际类别为: {}".format(y))
# print("")
if label == y:
right_count += 1
return right_count / len(X_test) # 返回最终分类结果表现 正确次数/测试数据集总数。
clf = KNN(X_train, y_train)
clf.score(X_test, y_test)
test_point = [6.0, 3.0]
print(‘Test Point: {}‘.format(clf.predict(test_point)))
plt.scatter(df[:50][‘sepal length‘], df[:50][‘sepal width‘], label=‘0‘)
plt.scatter(df[50:100][‘sepal length‘], df[50:100][‘sepal width‘], label=‘1‘)
plt.plot(test_point[0], test_point[1], ‘bo‘, label=‘test_point‘)
plt.xlabel(‘sepal length‘)
plt.ylabel(‘sepal width‘)
plt.legend()
from sklearn.neighbors import KNeighborsClassifier
clf_sk = KNeighborsClassifier()
clf_sk.fit(X_train, y_train)
clf_sk.score(X_test, y_test)
# kd-tree每个结点中主要包含的数据结构如下
class KdNode(object):
def __init__(self, dom_elt, split, left, right):
self.dom_elt = dom_elt # k维向量节点(k维空间中的一个样本点)
self.split = split # 整数(进行分割维度的序号)
self.left = left # 该结点分割超平面左子空间构成的kd-tree
self.right = right # 该结点分割超平面右子空间构成的kd-tree
class KdTree(object):
def __init__(self, data):
k = len(data[0]) # 数据维度
def CreateNode(split, data_set): # 按第split维划分数据集exset创建KdNode
if not data_set: # 数据集为空
return None
# key参数的值为一个函数,此函数只有一个参数且返回一个值用来进行比较
# operator模块提供的itemgetter函数用于获取对象的哪些维的数据,参数为需要获取的数据在对象
#data_set.sort(key=itemgetter(split)) # 按要进行分割的那一维数据排序
data_set.sort(key=lambda x: x[split])
split_pos = len(data_set) // 2 # //为Python中的整数除法
median = data_set[split_pos] # 中位数分割点
split_next = (split + 1) % k # cycle coordinates
# 递归的创建kd树
return KdNode(median, split,
CreateNode(split_next, data_set[:split_pos]), # 创建左子树
CreateNode(split_next, data_set[split_pos + 1:])) # 创建右子树
self.root = CreateNode(0, data) # 从第0维分量开始构建kd树,返回根节点
# KDTree的前序遍历
def preorder(root):
print (root.dom_elt)
if root.left: # 节点不为空
preorder(root.left)
if root.right:
preorder(root.right)
# 对构建好的kd树进行搜索,寻找与目标点最近的样本点:
from math import sqrt
from collections import namedtuple
# 定义一个namedtuple,分别存放最近坐标点、最近距离和访问过的节点数
result = namedtuple("Result_tuple", "nearest_point nearest_dist nodes_visited")
def find_nearest(tree, point):
k = len(point) # 数据维度
def travel(kd_node, target, max_dist):
if kd_node is None:
return result([0] * k, float("inf"), 0) # python中用float("inf")和float("-inf")表示正负
nodes_visited = 1
s = kd_node.split # 进行分割的维度
pivot = kd_node.dom_elt # 进行分割的“轴”
if target[s]
data = [[2,3],[5,4],[9,6],[4,7],[8,1],[7,2]]
kd = KdTree(data)
preorder(kd.root)
from time import clock
from random import random
# 产生一个k维随机向量,每维分量值在0~1之间
def random_point(k):
return [random() for _ in range(k)]
# 产生n个k维随机向量
def random_points(k, n):
return [random_point(k) for _ in range(n)]
ret = find_nearest(kd, [3,4.5])
print (ret)
N = 400000
t0 = clock()
kd2 = KdTree(random_points(3, N)) # 构建包含四十万个3维空间样本点的kd树
ret2 = find_nearest(kd2, [0.1,0.5,0.8]) # 四十万个样本点中寻找离目标最近的点
t1 = clock()
print ("time: ",t1-t0, "s")
print (ret2)
实验截图
4、
5、
6、
7、
8、
9、
10
11、
12、
13、
14、
15、
16、
17、
18、
19、
20、
21、
22、
23、
24、讨论K*邻算法的优缺点
1.简单易用
2.没有显式的训练过程,在训练过程中仅仅是把训练样本保存起来,训练时间开销为0,是懒惰学*(lazy learning) 的著名代表 。
3.预测效果好
4.对异常值不敏感
缺点
1、效率低下
2、高度数据相关
3、预测的结果不具有可解释性K*邻算法常见的应用场景:
2、社交网站的数据分类
3、手写识别系统的数据分类
4、聚类分析,多分类领域实验小结