#3144. 「APIO 2019」奇怪装置
2021-05-29 12:03
标签:gcd ast turn else clu 覆盖 等于 int out 考古学家发现古代文明留下了一种奇怪的装置。该装置包含两个屏幕,分别显示两个整数 \(x\) 和 \(y\)。 经过研究,科学家对该装置得出了一个结论:该装置是一个特殊的时钟,它从过去的某个时间点开始测量经过的时刻数 \(t\),但该装置的创造者却将 \(t\) 用奇怪的方式显示出来。若从该装置开始测量到现在所经过的时刻数为 \(t\),装置会显示两个整数:\(x = ((t + \lfloor \frac{t}{B} \rfloor) \bmod A)\),与 \(y = (t \bmod B)\)。这里 \(\lfloor x\rfloor\) 是下取整函数,表示小于或等于 \(x\) 的最大整数。 考古学家通过进一步研究还发现,该装置的屏幕无法一直工作。实际上,该装置的屏幕只在 \(n\) 个连续的时间区间段中能正常工作。第 \(i\) 个时间段从时刻 \(l_i\) 到时刻 \(r_i\)。现在科学家想要知道有多少个不同的数对 \((x, y)\) 能够在该装置工作时被显示出来。 两个数对 \((x_1, y_1)\) 和 \((x_2, y_2)\) 不同当且仅当 \(x_1 \not = x_2\) 或 \(y_1 \not = y_2\)。 第一行包含三个整数 \(n, A\) 与 \(B\)。 接下来 \(n\) 行每行两个整数 \(l_i, r_i\),表示装置可以工作的第 \(i\) 个时间区间。 输出一行一个整数表示问题的答案。 对于全部数据,\(1\le n\le 10^6,1\le A,B\le 10^{18},0\le l_i\le r_i\le 10^{18},r_i 首先这玩意肯定是有环的。找到过后将所有线段平移到环内就可以直接做线段覆盖。 对于一个数\(t\),首先跟他同构的数可以表示为\(t+k*B\),因为要保证\(y\)相同。然后\(t\)每增加\(B\),\(x\)就增加\(B+1\),增加了\(\frac{A}{\gcd(A,B+1)}\)后有会同构。所以环大小\(\frac{B*A}{\gcd(A,B+1)}\)。 代码: #3144. 「APIO 2019」奇怪装置 标签:gcd ast turn else clu 覆盖 等于 int out 原文地址:https://www.cnblogs.com/hchhch233/p/11096863.html#3144. 「APIO 2019」奇怪装置
题目描述
输入格式
输出格式
数据范围与提示
#include
文章标题:#3144. 「APIO 2019」奇怪装置
文章链接:http://soscw.com/index.php/essay/89099.html