Web - 消息队列
2021-06-04 13:04
标签:队列 web 依赖 联网 架构设计 特性 生生 查询 资源 在消息的传输过程中保存消息的容器; 异步,解耦,削峰. 异步:A系统需要发送个请求给B系统处理,由于B系统需要查询更新数据库花费时间较长,以至于A系统要等待B系统处理完毕后再发送下个请求,造成A系统资源浪费.使用消息队列后,A系统生产完消息后直接丢进消息消息队列,就完成一次请求,继续处理下个请求; 解耦:A系统发送个数据到BCD三个系统,接口调用发送,那如果E系统也要这个数据呢?那如果C系统现在不需要了呢?现在A系统又要发送第二种数据了呢?A系统负责人濒临崩溃中...再来点更加崩溃的事儿,A系统要时时刻刻考虑BCDE四个系统如果挂了咋办?我要不要重发?我要不要把消息存起来?使用消息队列就能解决这个问题,A系统只负责生产数据,不需要考虑消息被哪个系统来消费; 削峰:A系统调用B系统处理数据,每天0点到11点,A系统风平浪静,每秒并发请求数量就100个.结果每次一到11点~1点,每秒并发请求数量突然会暴增到1万条.但是B系统最大的处理能力就只能是每秒钟处理1000个请求啊……尴尬了,系统会崩掉……引入消息队列,把请求数据先存入消息中间件系统中,消费系统慢慢拉取消费; 一致性问题:A系统处理完了直接返回成功了,人都以为你这个请求就成功了;但是问题是,要是BCD三个系统那里,BD两个系统写库成功了,结果C系统写库失败了,咋整?你这数据就不一致了. 系统可用性降低:系统引入的外部依赖越多,越容易挂掉,本来你就是A系统调用BCD三个系统的接口就好了,人ABCD四个系统好好的,没啥问题,你偏加个MQ进来,万一MQ挂了咋整?MQ挂了,整套系统崩溃了,你不就完了么. 系统复杂性提高:硬生生加个MQ进来,你怎么保证消息没有重复消费?怎么处理消息丢失的情况?怎么保证消息传递的顺序性?头大头大,问题一大堆,痛苦不已 不啰嗦,上个表格. 特性 ActiveMQ RabbitMQ RocketMQ Kafka 单机吞吐量 万级,吞吐量比RocketMQ和Kafka要低了一个数量级 万级,吞吐量比RocketMQ和Kafka要低了一个数量级 10万级,RocketMQ也是可以支撑高吞吐的一种MQ 10万级别,这是kafka最大的优点,就是吞吐量高.一般配合大数据类的系统来进行实时数据计算、日志采集等场景 topic数量对吞吐量的影响 topic可以达到几百,几千个的级别,吞吐量会有较小幅度的下降,这是RocketMQ的一大优势,在同等机器下,可以支撑大量的topic topic从几十个到几百个的时候,吞吐量会大幅度下降,所以在同等机器下,kafka尽量保证topic数量不要过多.如果要支撑大规模topic,需要增加更多的机器资源 时效性 ms级 微秒级,这是rabbitmq的一大特点,延迟是最低的 ms级 延迟在ms级以内 可用性 高,基于主从架构实现高可用性 高,基于主从架构实现高可用性 非常高,分布式架构 非常高,kafka是分布式的,一个数据多个副本,少数机器宕机,不会丢失数据,不会导致不可用 消息可靠性 有较低的概率丢失数据 一般情况不会丢失消息 经过参数优化配置,消息可以做到0丢失 经过参数优化配置,消息可以做到0丢失 功能支持 MQ领域的功能极其完备 基于erlang开发,所以并发能力很强,性能极其好,延时很低 MQ功能较为完善,还是分布式的,扩展性好 功能较为简单,主要支持简单的MQ功能,在大数据领域的实时计算以及日志采集被大规模使用,是事实上的标准 优劣势总结 非常成熟,功能强大,在业内大量的公司以及项目中都有应用.偶尔会有较低概率丢失消息,而且现在社区以及国内应用都越来越少,官方社区现在对ActiveMQ5.x维护越来越少,几个月才发布一个版本,而且确实主要是基于解耦和异步来用的,较少在大规模吞吐的场景中使用. erlang语言开发,性能极其好,延时很低;吞吐量到万级,MQ功能比较完备,而且开源提供的管理界面非常棒,用起来很好用.社区相对比较活跃,几乎每个月都发布几个版本,在国内一些互联网公司近几年用rabbitmq也比较多一些.但是问题也是显而易见的,RabbitMQ确实吞吐量会低一些,这是因为他做的实现机制比较重.而且erlang开发,国内有几个公司有实力做erlang源码级别的研究和定制?如果说你没这个实力的话,确实偶尔会有一些问题,你很难去看懂源码,你公司对这个东西的掌控很弱,基本职能依赖于开源社区的快速维护和修复bug.而且rabbitmq集群动态扩展会很麻烦,不过这个我觉得还好.其实主要是erlang语言本身带来的问题.很难读源码,很难定制和控制 接口简单易用,而且毕竟在阿里大规模应用过,有阿里品牌保障,日处理消息上百亿之多,可以做到大规模吞吐,性能也非常好,分布式扩展也很方便,社区维护还可以,可靠性和可用性都是ok的,还可以支撑大规模的topic数量,支持复杂MQ业务场景.而且一个很大的优势在于,阿里出品都是java系的,我们可以自己阅读源码,定制自己公司的MQ,可以掌控社区活跃度相对较为一般,不过也还可以,文档相对来说简单一些,然后接口这块不是按照标准JMS规范走的有些系统要迁移需要修改大量代码.还有就是阿里出台的技术,你得做好这个技术万一被抛弃,社区黄掉的风险,那如果你们公司有技术实力我觉得用RocketMQ挺好的 kafka的特点其实很明显,就是仅仅提供较少的核心功能,但是提供超高的吞吐量,ms级的延迟,极高的可用性以及可靠性,而且分布式可以任意扩展同时kafka最好是支撑较少的topic数量即可,保证其超高吞吐量,而且kafka唯一的一点劣势是有可能消息重复消费,那么对数据准确性会造成极其轻微的影响,在大数据领域中以及日志采集中,这点轻微影响可以忽略,这个特性天然适合大数据实时计算以及日志收集 1、首先这个mq得支持可伸缩性吧,就是需要的时候快速扩容,就可以增加吞吐量和容量,那怎么搞?设计个分布式的系统呗,参照一下kafka的设计理念,broker->topic->partition,每个partition放一个机器,就存一部分数据.如果现在资源不够了,简单啊,给topic增加partition,然后做数据迁移,增加机器,不就可以存放更多数据,提供更高的吞吐量了? 2、其次你得考虑一下这个mq的数据要不要落地磁盘吧?那肯定要了,落磁盘,才能保证别进程挂了数据就丢了.那落磁盘的时候怎么落啊?顺序写,这样就没有磁盘随机读写的寻址开销,磁盘顺序读写的性能是很高的,这就是kafka的思路. 3、其次你考虑一下你的mq的可用性啊?这个事儿,具体参考我们之前可用性那个环节讲解的kafka的高可用保障机制.多副本->leader&follower->broker挂了重新选举leader即可对外服务. 4、能不能支持数据0丢失啊? Web - 消息队列 标签:队列 web 依赖 联网 架构设计 特性 生生 查询 资源 原文地址:https://www.cnblogs.com/qingaoaoo/p/12340905.html消息队列(Messagequeue)
为什么使用消息队列?
缺点:
activemq、rabbitmq、rocketmq都有什么优点和缺点啊?
如果让你写一个消息队列,该如何进行架构设计啊?说一下你的思路