象群游牧算法-Matlab
2021-06-04 21:05
标签:适应 any lead max dimens ati new 显示 val 1. 适应度函数: 2. EHO主函数 3. 可视化 4. 结果显示 象群游牧算法-Matlab 标签:适应 any lead max dimens ati new 显示 val 原文地址:https://www.cnblogs.com/mysterygust/p/14640142.htmlfunction z=chaffer(x)%chaffer函数x=(0...0) f(x)=0 x[-10,10]%%没测
n=10;
s1=0;
for i=1:n
s1=s1+x(i)^2;
end
z=((sin(sqrt(s1)))^2-0.5)/(1+0.001*s1)+0.5;
end
% ----------------------------------------------------------
% Title: Elephant Herbing Optimization Algorithm
% Institution: XI‘AN POLYTECHNIC UNIVERSITY
% Author: Liwenchao
% Time: 2020-11-8
% ----------------------------------------------------------
clc
clear
% ----------------------------
% Definition of Problems
% ----------------------------
CostFunction = @(x) chaffer(x); % cost function
dim_Var = 10; % variables of dimensions
VarMin = -32.768; % lower boundary
VarMax = 32.768; % upper boundary
% -------------------------------------------------------------------------
% Setting Parameters of Elephant Herbing Optimization Algorithm
% -------------------------------------------------------------------------
alpha = 0.75; % alpha is a scale factor that determines the influence of matriarch on elephant
beta = 0.01; % beta is a scale factor that determines the influence of the center of clan on elephant
epoches = 1000; % the maximum number of epoches
num_clan = 5; % the number of clans
num_pop = 10; % the number of elephants in each clans
num_male = 1; % leave family group
% -----------------------------------
% Initialization of Population
% -----------------------------------
init_pop = VarMin + rand(num_clan*num_pop, dim_Var) .* (VarMax - VarMin);
pop_fitness = zeros(num_pop, 1);
fit_clan = zeros(num_pop, 1);
pop_best_fitness = zeros(epoches, 1);
for n=1: num_clan*num_pop
pop_fitness(n) = CostFunction(init_pop(n, :));
end
[pop_fbest, pop_best_loc] = min(pop_fitness);
best_pop = init_pop(pop_best_loc, :);
%------------------------------------------
% EHO generation starts ......
%------------------------------------------
for iter=1:epoches
for j=1: num_clan
clan = init_pop((j-1)*num_pop +1: j * num_pop, :);
for k=1: num_pop
fit_clan(k,:) = CostFunction(clan(k, :));
end
% best fitness value and its location
[fbest, best_loc] = min(fit_clan);
clan_best = clan(best_loc, :);
% worst fitness value and its location
[fworst, worst_loc] = max(fit_clan);
clan_worst = clan(worst_loc, :);
for k=1:num_pop
if any((k~=best_loc)&(k~=worst_loc))
% update elephant position in clan except best and worst elephant
clan(k, :) = clan(k, :) + alpha*(clan_best - clan(k, :))*rand;
elseif k==best_loc
% update leader or matriarch
clan_center = sum(clan) / num_pop;
clan(k, :) = beta*clan_center;
elseif k==worst_loc
% update worst elephant or male
clan(k, :) = VarMin + rand* (VarMax - VarMin + 1);
end
init_pop((j-1)*num_pop +1: j * num_pop, :) = clan;
end
end
% ----------------------------------------------------------------
% evaluation population by the newly updated positions
% ----------------------------------------------------------------
for n=1: num_clan*num_pop
pop_fitness(n) = CostFunction(init_pop(n, :));
end
[new_pop_fbest, new_pop_best_loc] = min(pop_fitness);
if new_pop_fbest
% -------------------------------------
% visualization
% -------------------------------------
figure;
%plot(pop_best_fitness)
semilogy(pop_best_fitness);
xlabel(‘iteration‘);
ylabel(‘fitness‘);
legend(‘chaffer‘);
title(‘Elephant Herbing Optimization‘)
上一篇:树状数组求逆序对个数
下一篇:JavaScript的调用堆栈