Python爬虫技术--基础篇--内建模块datetime和collections
2021-06-11 10:02
标签:erro dict ons 如何 tps port 使用 upd collect 1.datetime datetime是Python处理日期和时间的标准库。 我们先看如何获取当前日期和时间:获取当前日期和时间
>>> from datetime import datetime
>>> now = datetime.now() # 获取当前datetime
>>> print(now)
2015-05-18 16:28:07.198690
>>> print(type(now))
class ‘datetime.datetime‘>
注意到datetime
是模块,datetime
模块还包含一个datetime
类,通过from datetime import datetime
导入的才是datetime
这个类。
如果仅导入import datetime
,则必须引用全名datetime.datetime
。
datetime.now()
返回当前日期和时间,其类型是datetime
。
获取指定日期和时间
要指定某个日期和时间,我们直接用参数构造一个datetime
:
>>> from datetime import datetime
>>> dt = datetime(2015, 4, 19, 12, 20) # 用指定日期时间创建datetime
>>> print(dt)
2015-04-19 12:20:00
datetime转换为timestamp
在计算机中,时间实际上是用数字表示的。我们把1970年1月1日 00:00:00 UTC+00:00时区的时刻称为epoch time,记为0
(1970年以前的时间timestamp为负数),当前时间就是相对于epoch time的秒数,称为timestamp。
你可以认为:
timestamp = 0 = 1970-1-1 00:00:00 UTC+0:00
对应的北京时间是:
timestamp = 0 = 1970-1-1 08:00:00 UTC+8:00
可见timestamp的值与时区毫无关系,因为timestamp一旦确定,其UTC时间就确定了,转换到任意时区的时间也是完全确定的,这就是为什么计算机存储的当前时间是以timestamp表示的,因为全球各地的计算机在任意时刻的timestamp都是完全相同的(假定时间已校准)。
把一个datetime
类型转换为timestamp只需要简单调用timestamp()
方法:
>>> from datetime import datetime
>>> dt = datetime(2015, 4, 19, 12, 20) # 用指定日期时间创建datetime
>>> dt.timestamp() # 把datetime转换为timestamp
1429417200.0
注意Python的timestamp是一个浮点数,整数位表示秒。
某些编程语言(如Java和JavaScript)的timestamp使用整数表示毫秒数,这种情况下只需要把timestamp除以1000就得到Python的浮点表示方法。
timestamp转换为datetime
要把timestamp转换为datetime
,使用datetime
提供的fromtimestamp()
方法:
>>> from datetime import datetime
>>> t = 1429417200.0
>>> print(datetime.fromtimestamp(t))
2015-04-19 12:20:00
注意到timestamp是一个浮点数,它没有时区的概念,而datetime是有时区的。上述转换是在timestamp和本地时间做转换。
本地时间是指当前操作系统设定的时区。例如北京时区是东8区,则本地时间:
2015-04-19 12:20:00
实际上就是UTC+8:00时区的时间:
2015-04-19 12:20:00 UTC+8:00
而此刻的格林威治标准时间与北京时间差了8小时,也就是UTC+0:00时区的时间应该是:
2015-04-19 04:20:00 UTC+0:00
timestamp也可以直接被转换到UTC标准时区的时间:
>>> from datetime import datetime
>>> t = 1429417200.0
>>> print(datetime.fromtimestamp(t)) # 本地时间
2015-04-19 12:20:00
>>> print(datetime.utcfromtimestamp(t)) # UTC时间
2015-04-19 04:20:00
str转换为datetime
很多时候,用户输入的日期和时间是字符串,要处理日期和时间,首先必须把str转换为datetime。转换方法是通过datetime.strptime()
实现,需要一个日期和时间的格式化字符串:
>>> from datetime import datetime
>>> cday = datetime.strptime(‘2015-6-1 18:19:59‘, ‘%Y-%m-%d %H:%M:%S‘)
>>> print(cday)
2015-06-01 18:19:59
字符串‘%Y-%m-%d %H:%M:%S‘
规定了日期和时间部分的格式。详细的说明请参考Python文档。
注意转换后的datetime是没有时区信息的。
datetime转换为str
如果已经有了datetime对象,要把它格式化为字符串显示给用户,就需要转换为str,转换方法是通过strftime()
实现的,同样需要一个日期和时间的格式化字符串:
>>> from datetime import datetime
>>> now = datetime.now()
>>> print(now.strftime(‘%a, %b %d %H:%M‘))
Mon, May 05 16:28
datetime加减
对日期和时间进行加减实际上就是把datetime往后或往前计算,得到新的datetime。加减可以直接用+
和-
运算符,不过需要导入timedelta
这个类:
>>> from datetime import datetime, timedelta
>>> now = datetime.now()
>>> now
datetime.datetime(2015, 5, 18, 16, 57, 3, 540997)
>>> now + timedelta(hours=10)
datetime.datetime(2015, 5, 19, 2, 57, 3, 540997)
>>> now - timedelta(days=1)
datetime.datetime(2015, 5, 17, 16, 57, 3, 540997)
>>> now + timedelta(days=2, hours=12)
datetime.datetime(2015, 5, 21, 4, 57, 3, 540997)
可见,使用timedelta
你可以很容易地算出前几天和后几天的时刻。
本地时间转换为UTC时间
本地时间是指系统设定时区的时间,例如北京时间是UTC+8:00时区的时间,而UTC时间指UTC+0:00时区的时间。
一个datetime
类型有一个时区属性tzinfo
,但是默认为None
,所以无法区分这个datetime
到底是哪个时区,除非强行给datetime
设置一个时区:
>>> from datetime import datetime, timedelta, timezone
>>> tz_utc_8 = timezone(timedelta(hours=8)) # 创建时区UTC+8:00
>>> now = datetime.now()
>>> now
datetime.datetime(2015, 5, 18, 17, 2, 10, 871012)
>>> dt = now.replace(tzinfo=tz_utc_8) # 强制设置为UTC+8:00
>>> dt
datetime.datetime(2015, 5, 18, 17, 2, 10, 871012, tzinfo=datetime.timezone(datetime.timedelta(0, 28800)))
如果系统时区恰好是UTC+8:00,那么上述代码就是正确的,否则,不能强制设置为UTC+8:00时区。
时区转换
我们可以先通过utcnow()
拿到当前的UTC时间,再转换为任意时区的时间:
# 拿到UTC时间,并强制设置时区为UTC+0:00:
>>> utc_dt = datetime.utcnow().replace(tzinfo=timezone.utc)
>>> print(utc_dt)
2015-05-18 09:05:12.377316+00:00
# astimezone()将转换时区为北京时间:
>>> bj_dt = utc_dt.astimezone(timezone(timedelta(hours=8)))
>>> print(bj_dt)
2015-05-18 17:05:12.377316+08:00
# astimezone()将转换时区为东京时间:
>>> tokyo_dt = utc_dt.astimezone(timezone(timedelta(hours=9)))
>>> print(tokyo_dt)
2015-05-18 18:05:12.377316+09:00
# astimezone()将bj_dt转换时区为东京时间:
>>> tokyo_dt2 = bj_dt.astimezone(timezone(timedelta(hours=9)))
>>> print(tokyo_dt2)
2015-05-18 18:05:12.377316+09:00
时区转换的关键在于,拿到一个datetime
时,要获知其正确的时区,然后强制设置时区,作为基准时间。
利用带时区的datetime
,通过astimezone()
方法,可以转换到任意时区。
注:不是必须从UTC+0:00时区转换到其他时区,任何带时区的datetime
都可以正确转换,例如上述bj_dt
到tokyo_dt
的转换。
小结
datetime
表示的时间需要时区信息才能确定一个特定的时间,否则只能视为本地时间。
如果要存储datetime
,最佳方法是将其转换为timestamp再存储,因为timestamp的值与时区完全无关。
2.collections
collections是Python内建的一个集合模块,提供了许多有用的集合类。
namedtuple
我们知道tuple
可以表示不变集合,例如,一个点的二维坐标就可以表示成:
>>> p = (1, 2)
但是,看到(1, 2)
,很难看出这个tuple
是用来表示一个坐标的。
定义一个class又小题大做了,这时,namedtuple
就派上了用场:
>>> from collections import namedtuple
>>> Point = namedtuple(‘Point‘, [‘x‘, ‘y‘])
>>> p = Point(1, 2)
>>> p.x
1
>>> p.y
2
namedtuple
是一个函数,它用来创建一个自定义的tuple
对象,并且规定了tuple
元素的个数,并可以用属性而不是索引来引用tuple
的某个元素。
这样一来,我们用namedtuple
可以很方便地定义一种数据类型,它具备tuple的不变性,又可以根据属性来引用,使用十分方便。
可以验证创建的Point
对象是tuple
的一种子类:
>>> isinstance(p, Point)
True
>>> isinstance(p, tuple)
True
类似的,如果要用坐标和半径表示一个圆,也可以用namedtuple
定义:
# namedtuple(‘名称‘, [属性list]):
Circle = namedtuple(‘Circle‘, [‘x‘, ‘y‘, ‘r‘])
deque
使用list
存储数据时,按索引访问元素很快,但是插入和删除元素就很慢了,因为list
是线性存储,数据量大的时候,插入和删除效率很低。
deque是为了高效实现插入和删除操作的双向列表,适合用于队列和栈:
>>> from collections import deque
>>> q = deque([‘a‘, ‘b‘, ‘c‘])
>>> q.append(‘x‘)
>>> q.appendleft(‘y‘)
>>> q
deque([‘y‘, ‘a‘, ‘b‘, ‘c‘, ‘x‘])
deque
除了实现list的append()
和pop()
外,还支持appendleft()
和popleft()
,这样就可以非常高效地往头部添加或删除元素。
defaultdict
使用dict
时,如果引用的Key不存在,就会抛出KeyError
。如果希望key不存在时,返回一个默认值,就可以用defaultdict
:
>>> from collections import defaultdict
>>> dd = defaultdict(lambda: ‘N/A‘)
>>> dd[‘key1‘] = ‘abc‘
>>> dd[‘key1‘] # key1存在
‘abc‘
>>> dd[‘key2‘] # key2不存在,返回默认值
‘N/A‘
注意默认值是调用函数返回的,而函数在创建defaultdict
对象时传入。
除了在Key不存在时返回默认值,defaultdict
的其他行为跟dict
是完全一样的。
OrderedDict
使用dict
时,Key是无序的。在对dict
做迭代时,我们无法确定Key的顺序。
如果要保持Key的顺序,可以用OrderedDict
:
>>> from collections import OrderedDict
>>> d = dict([(‘a‘, 1), (‘b‘, 2), (‘c‘, 3)])
>>> d # dict的Key是无序的
{‘a‘: 1, ‘c‘: 3, ‘b‘: 2}
>>> od = OrderedDict([(‘a‘, 1), (‘b‘, 2), (‘c‘, 3)])
>>> od # OrderedDict的Key是有序的
OrderedDict([(‘a‘, 1), (‘b‘, 2), (‘c‘, 3)])
注意,OrderedDict
的Key会按照插入的顺序排列,不是Key本身排序:
>>> od = OrderedDict()
>>> od[‘z‘] = 1
>>> od[‘y‘] = 2
>>> od[‘x‘] = 3
>>> list(od.keys()) # 按照插入的Key的顺序返回
[‘z‘, ‘y‘, ‘x‘]
OrderedDict
可以实现一个FIFO(先进先出)的dict,当容量超出限制时,先删除最早添加的Key:
from collections import OrderedDict
class LastUpdatedOrderedDict(OrderedDict):
def __init__(self, capacity):
super(LastUpdatedOrderedDict, self).__init__()
self._capacity = capacity
def __setitem__(self, key, value):
containsKey = 1 if key in self else 0
if len(self) - containsKey >= self._capacity:
last = self.popitem(last=False)
print(‘remove:‘, last)
if containsKey:
del self[key]
print(‘set:‘, (key, value))
else:
print(‘add:‘, (key, value))
OrderedDict.__setitem__(self, key, value)
ChainMap
ChainMap
可以把一组dict
串起来并组成一个逻辑上的dict
。ChainMap
本身也是一个dict,但是查找的时候,会按照顺序在内部的dict依次查找。
什么时候使用ChainMap
最合适?举个例子:应用程序往往都需要传入参数,参数可以通过命令行传入,可以通过环境变量传入,还可以有默认参数。我们可以用ChainMap
实现参数的优先级查找,即先查命令行参数,如果没有传入,再查环境变量,如果没有,就使用默认参数。
下面的代码演示了如何查找user
和color
这两个参数:
from collections import ChainMap
import os, argparse
# 构造缺省参数:
defaults = {
‘color‘: ‘red‘,
‘user‘: ‘guest‘
}
# 构造命令行参数:
parser = argparse.ArgumentParser()
parser.add_argument(‘-u‘, ‘--user‘)
parser.add_argument(‘-c‘, ‘--color‘)
namespace = parser.parse_args()
command_line_args = { k: v for k, v in vars(namespace).items() if v }
# 组合成ChainMap:
combined = ChainMap(command_line_args, os.environ, defaults)
# 打印参数:
print(‘color=%s‘ % combined[‘color‘])
print(‘user=%s‘ % combined[‘user‘])
没有任何参数时,打印出默认参数:
$ python3 use_chainmap.py
color=red
user=guest
当传入命令行参数时,优先使用命令行参数:
$ python3 use_chainmap.py -u bob
color=red
user=bob
同时传入命令行参数和环境变量,命令行参数的优先级较高:
$ user=admin color=green python3 use_chainmap.py -u bob
color=green
user=bob
Counter
Counter
是一个简单的计数器,例如,统计字符出现的个数:
>>> from collections import Counter
>>> c = Counter()
>>> for ch in ‘programming‘:
... c[ch] = c[ch] + 1
...
>>> c
Counter({‘g‘: 2, ‘m‘: 2, ‘r‘: 2, ‘a‘: 1, ‘i‘: 1, ‘o‘: 1, ‘n‘: 1, ‘p‘: 1})
>>> c.update(‘hello‘) # 也可以一次性update
>>> c
Counter({‘r‘: 2, ‘o‘: 2, ‘g‘: 2, ‘m‘: 2, ‘l‘: 2, ‘p‘: 1, ‘a‘: 1, ‘i‘: 1, ‘n‘: 1, ‘h‘: 1, ‘e‘: 1})
Counter
实际上也是dict
的一个子类,上面的结果可以看出每个字符出现的次数。
小结
collections
模块提供了一些有用的集合类,可以根据需要选用。
Python爬虫技术--基础篇--内建模块datetime和collections
标签:erro dict ons 如何 tps port 使用 upd collect
原文地址:https://www.cnblogs.com/cy0628/p/14225174.html
文章标题:Python爬虫技术--基础篇--内建模块datetime和collections
文章链接:http://soscw.com/index.php/essay/93535.html