win8中如何通过新打开的窗口进行打开或保存文件

2020-12-02 08:32

阅读:496

标签:lcd   驱动   linux   嵌入式   arm9   


一.硬件基础

    1.硬件框图

mamicode.com,搜素材

    2.LCD控制器

    了解硬件最直接的办法就是看手册,在这里我只会简单介绍下LCD的硬件。具体的我会在下面结合程序讲解。

mamicode.com,搜素材

             a.REGBANK是LCD控制器的寄存器,含17个寄存器以及一块256*16的调色内存,用来设置各项参数。

             b.LCDCDMA是LCD控制器专用的DMA信道。

             c.TIMEGEN和LPC3600负责产生LCD屏所需要的控制时序。

             d.VIDPRCS需要与LCDCDMA中的数组合成特定的格式,然后从VD[23:0]发送给LCD屏幕。

      3.时序理解

mamicode.com,搜素材

mamicode.com,搜素材

二.驱动框架

mamicode.com,搜素材

我们从上面这幅图看,帧缓冲设备在Linux中也可以看做是一个完整的子系统,大体由fbmem.c和xxxfb.c组成。向上给应用程序提供完善的设备文件操作接口(即对FrameBuffer设备进行read、write、ioctl等操作),接口在Linux提供的fbmem.c文件中实现;向下提供了硬件操作的接口,只是这些接口Linux并没有提供实现,因为这要根据具体的LCD控制器硬件进行设置,所以这就是我们要做的事情了(即xxxfb.c部分的实现)。


三.改写驱动

        1.程序代码

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 

#include 
#include 
#include 

#include 
#include 
#include 
#include 

static int s3c_lcdfb_setcolreg(unsigned int regno, unsigned int red,
			     unsigned int green, unsigned int blue,
			     unsigned int transp, struct fb_info *info);


struct lcd_regs {
	unsigned long	lcdcon1;
	unsigned long	lcdcon2;
	unsigned long	lcdcon3;
	unsigned long	lcdcon4;
	unsigned long	lcdcon5;
    unsigned long	lcdsaddr1;
    unsigned long	lcdsaddr2;
    unsigned long	lcdsaddr3;
    unsigned long	redlut;
    unsigned long	greenlut;
    unsigned long	bluelut;
    unsigned long	reserved[9];
    unsigned long	dithmode;
    unsigned long	tpal;
    unsigned long	lcdintpnd;
    unsigned long	lcdsrcpnd;
    unsigned long	lcdintmsk;
    unsigned long	lpcsel;
};

static struct fb_ops s3c_lcdfb_ops = {
	.owner		= THIS_MODULE,
	.fb_setcolreg	= s3c_lcdfb_setcolreg,
	.fb_fillrect	= cfb_fillrect,
	.fb_copyarea	= cfb_copyarea,
	.fb_imageblit	= cfb_imageblit,
};


static struct fb_info *s3c_lcd;         
static volatile unsigned long *gpbcon;
static volatile unsigned long *gpbdat;
static volatile unsigned long *gpccon;
static volatile unsigned long *gpdcon;
static volatile unsigned long *gpgcon;
static volatile struct lcd_regs* lcd_regs;
static u32 pseudo_palette[16];


/* from pxafb.c */
static inline unsigned int chan_to_field(unsigned int chan, struct fb_bitfield *bf)
{
	chan &= 0xffff;          //清零高16位
	chan >>= 16 - bf->length;  //保留高8位置
	return chan offset;  //左移起始地址(得到的值就是颜色了)
}


static int s3c_lcdfb_setcolreg(unsigned int regno, unsigned int red,
			     unsigned int green, unsigned int blue,
			     unsigned int transp, struct fb_info *info)
{
	unsigned int val;
	
	if (regno > 16)
		return 1;

	/* 用red,green,blue三原色构造出val */
	val  = chan_to_field(red,	&info->var.red);
	val |= chan_to_field(green,     &info->var.green);
	val |= chan_to_field(blue,	&info->var.blue);
	
	//((u32 *)(info->pseudo_palette))[regno] = val;
	pseudo_palette[regno] = val;
	return 0;
}
/*入口函数*/
static int lcd_init(void)             
{
	/* 1. 分配一个fb_info */
	s3c_lcd = framebuffer_alloc(0, NULL);

	/* 2. 设置 */
	/* 2.1 设置固定的参数 */
	strcpy(s3c_lcd->fix.id, "mylcd");
	s3c_lcd->fix.smem_len = 320*240*32/8;        /* MINI2440的LCD位宽是24,但是2440里会分配4字节即32位(浪费1字节) */
	s3c_lcd->fix.type     = FB_TYPE_PACKED_PIXELS;
	s3c_lcd->fix.visual   = FB_VISUAL_TRUECOLOR; /* TFT */
	s3c_lcd->fix.line_length = 240*4;    /*一行240没个占4个字节*/
	
	/* 2.2 设置可变的参数 */
	s3c_lcd->var.xres           = 240;
	s3c_lcd->var.yres           = 320;
	s3c_lcd->var.xres_virtual   = 240;
	s3c_lcd->var.yres_virtual   = 320;
	s3c_lcd->var.bits_per_pixel = 32;

	/* RGB:565 */
	s3c_lcd->var.red.offset     = 16;
	s3c_lcd->var.red.length     = 8;
	
	s3c_lcd->var.green.offset   = 8;
	s3c_lcd->var.green.length   = 8;

	s3c_lcd->var.blue.offset    = 0;
	s3c_lcd->var.blue.length    = 8;

	s3c_lcd->var.activate       = FB_ACTIVATE_NOW;
	
	
	/* 2.3 设置操作函数 */
	s3c_lcd->fbops              = &s3c_lcdfb_ops;
	
	/* 2.4 其他的设置 */
	s3c_lcd->pseudo_palette = pseudo_palette; /*调色板*/
	//s3c_lcd->screen_base  = ;  /* 显存的虚拟地址 */ 
	s3c_lcd->screen_size   = 320*240*32/8;       /*显存大小*/

	/* 3. 硬件相关的操作 */
	/* 3.1 配置GPIO用于LCD */
	gpbcon = ioremap(0x56000010, 8);
	gpbdat = gpbcon+1;
	gpccon = ioremap(0x56000020, 4);
	gpdcon = ioremap(0x56000030, 4);
	gpgcon = ioremap(0x56000060, 4);

    *gpccon  = 0xaaaaaaaa;   /* GPIO管脚用于VD[7:0],LCDVF[2:0],VM,VFRAME,VLINE,VCLK,LEND */
	*gpdcon  = 0xaaaaaaaa;   /* GPIO管脚用于VD[23:8] */
	
//	*gpbcon &= ~(3);  /* GPB0设置为输出引脚 */
//	*gpbcon |= 1;
//	*gpbdat &= ~1;     /* 输出低电平 */

	*gpgcon |= (3lcdcon1  = (7lcdcon2  = (2lcdcon3 = (20lcdcon4 = 10;

	/* 信号的极性 
	 * bit[11]: 1=565 format, 对于24bpp这个不用设
	 * bit[10]: 0 = The video data is fetched at VCLK falling edge
	 * bit[9] : 1 = HSYNC信号要反转,即低电平有效 
	 * bit[8] : 1 = VSYNC信号要反转,即低电平有效 
	 * bit[6] : 0 = VDEN不用反转
	 * bit[3] : 0 = PWREN输出0
	 *
	 * BSWP = 0, HWSWP = 0, BPP24BL = 0 : 当bpp=24时,2440会给每一个象素分配32位即4字节,哪一个字节是不使用的? 看2440手册P412
         * bit[12]: 0, LSB valid, 即最高字节不使用
	 * bit[1] : 0 = BSWP
	 * bit[0] : 0 = HWSWP
	 */
	lcd_regs->lcdcon5 = (0screen_base = dma_alloc_writecombine(NULL, s3c_lcd->fix.smem_len, &s3c_lcd->fix.smem_start, GFP_KERNEL);
	
	lcd_regs->lcdsaddr1  = (s3c_lcd->fix.smem_start >> 1) & ~(3lcdsaddr2  = ((s3c_lcd->fix.smem_start + s3c_lcd->fix.smem_len) >> 1) & 0x1fffff;
	lcd_regs->lcdsaddr3  = (240*32/16);  /* 一行的长度(单位: 2字节) */	
	
	//s3c_lcd->fix.smem_start = xxx;  /* 显存的物理地址 */
	/* 启动LCD */
	lcd_regs->lcdcon1 |= (1lcdcon5 |= (1lcdcon1 &= ~(1lcdcon1 &= ~(1fix.smem_len, s3c_lcd->screen_base, s3c_lcd->fix.smem_start);
	iounmap(lcd_regs);
	iounmap(gpbcon);
	iounmap(gpccon);
	iounmap(gpdcon);
	iounmap(gpgcon);
	framebuffer_release(s3c_lcd);
}

module_init(lcd_init);
module_exit(lcd_exit);

MODULE_LICENSE("GPL");

           2.功能实现 (LCD四部曲)

                    a. 分配一个fb_info结构体: framebuffer_alloc

上面框图我们可以知道,我们所有的操作都是通过fb_info结构体与上面交互的。所以首先先分配一个结构体。

                    b. 设置

                                1.设置固定参数

参考\linux-2.6.22.6\linux-2.6.22.6\include\linux\fb.h中的struct fb_fix_screeninfo { }

                                2.设置可变参数

参考\linux-2.6.22.6\linux-2.6.22.6\include\linux\fb.h中的struct fb_var_screeninfo{ }

                                3.设置操作函数

                                4.其他设置

                    c.硬件相关的操作

                                1.配置GPIO用于LCD

mamicode.com,搜素材

mamicode.com,搜素材mamicode.com,搜素材


mamicode.com,搜素材mamicode.com,搜素材


相信看了上面的手册,应该明白为什么这么设置了。0xaaaaaaaa就是都设成了1010......(相信小伙伴都懂我说的是啥了)

                                2.根据LCD手册设置LCD控制器, 比如VCLK的频率等

这个是重点,一般改写LCD只改写这里就行了。

首先建立映射,LCD Controller比较多,我们把它放到一个结构体里面。

                                下面开始设置比较重要的几个寄存器:

首先贴出LCD手册中的设置

mamicode.com,搜素材

mamicode.com,搜素材


                                           a.  LCDCON1

mamicode.com,搜素材

LINECNT只读的不用设置

CLKVAL根据公式TFT: VCLK = HCLK / [(CLKVAL+1) x 2]

                                  根据 6.39MHz = 100MHz / [(CLKVAL+1) x 2]可以算出CLKVAL约等于CLKVAL = 7

                                   VCLK是根据LCD芯片手册上

mamicode.com,搜素材

MMODE为0               PNRMODE为11 TFT模式           BPPMODE  为1101 = 24 bpp for TFT

ENVID 先设置为0

                                           b.  LCDCON2

mamicode.com,搜素材

    /* 垂直方向的时间参数
     * 根据数据手册
     * bit[31:24]: VBPD, VSYNC之后再过多长时间才能发出第1行数据
     *             LCD手册 2
     *             VBPD=17
     * bit[23:14]: 多少行, 320, 所以LINEVAL=320-1=319
     * bit[13:6] : VFPD, 发出最后一行数据之后,再过多长时间才发出VSYNC
     *             LCD手册2
     * bit[5:0]  : VSPW, VSYNC信号的脉冲宽度, LCD手册tvp=1, 所以VSPW=1-1=0
     */

                                           c.  LCDCON3

mamicode.com,搜素材

    /* 水平方向的时间参数
     * bit[25:19]: HBPD, VSYNC之后再过多长时间才能发出第1行数据
     *             LCD手册 20
     * bit[18:8]: 多少列, 240, 所以HOZVAL=240-1=239
     * bit[7:0] : HFPD, 发出最后一行里最后一个象素数据之后,再过多长时间才发出HSYNC
     *             LCD手册10
     */

                                           d.  LCDCON4

mamicode.com,搜素材

    /* 水平方向的同步信号
     * bit[7:0]    : HSPW, HSYNC信号的脉冲宽度, LCD手册HSPW=10
     */   

                                           e.  LCDCON5

mamicode.com,搜素材

    /* 信号的极性
     * bit[11]: 1=565 format, 对于24bpp这个不用设
     * bit[10]: 0 = The video data is fetched at VCLK falling edge
     * bit[9] : 1 = HSYNC信号要反转,即低电平有效
     * bit[8] : 1 = VSYNC信号要反转,即低电平有效
     * bit[6] : 0 = VDEN不用反转
     * bit[3] : 0 = PWREN输出0
     *
     * BSWP = 0, HWSWP = 0, BPP24BL = 0 : 当bpp=24时,2440会给每一个象素分配32位即4字节,哪一个字节是不使用的? 看2440手册P412
         * bit[12]: 0, LSB valid, 即最高字节不使用
     * bit[1] : 0 = BSWP
     * bit[0] : 0 = HWSWP
     */

                                3.分配显存(framebuffer), 并把地址告诉LCD控制器

a.分配

	s3c_lcd->screen_base = dma_alloc_writecombine(NULL, s3c_lcd->fix.smem_len, &s3c_lcd->fix.smem_start, GFP_KERNEL);

b.设置

     LCDSADDR1

mamicode.com,搜素材

我们只需要将LCD地址右移1位置。然后将前两位(没用到的)清零即可。

	lcd_regs->lcdsaddr1  = (s3c_lcd->fix.smem_start >> 1) & ~(3     LCDSADDR2

mamicode.com,搜素材

这里用到结束地址(其实就是开始地址+长度)然后右移动1位,最后将没用到的位清零。

	lcd_regs->lcdsaddr2  = ((s3c_lcd->fix.smem_start + s3c_lcd->fix.smem_len) >> 1) & 0x1fffff;

      LCDSADDR3

mamicode.com,搜素材

表示的一行的长度,用半字(2字节)表示:

	lcd_regs->lcdsaddr3  = (240*32/16);  /* 一行的长度(单位: 2字节) */	

     
                     d.注册: register_framebuffer


我们做的这些要叫内核知道,所以最后要注册一下

参考:韦东山视频二期

           黄刚的S3C2440上LCD驱动(FrameBuffer)实例开发讲解 www.linuxidc.com/Linux/2011-03/33600.htm        

win8中如何通过新打开的窗口进行打开或保存文件

标签:lcd   驱动   linux   嵌入式   arm9   

原文地址:http://blog.csdn.net/u010792238/article/details/24706097


评论


亲,登录后才可以留言!