最短路径---Dijkstra算法

2021-07-16 04:07

阅读:520

标签:为什么   iostream   最小   ble   顶点   log   div   tps   jsb   

迪杰斯特拉算法 Dijkstra算法

是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中最短路径问题。迪杰斯特拉算法主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。

Dijkstra算法示例演示(摘自Ouyang_Lianjun博客)

下面我求下图,从顶点v1到其他各个顶点的最短路径

技术分享图片

首先第一步,我们先声明一个dis数组,该数组初始化的值为: 
技术分享图片

我们的顶点集T的初始化为:T={v1}

既然是求 v1顶点到其余各个顶点的最短路程,那就先找一个离 1 号顶点最近的顶点。通过数组 dis 可知当前离v1顶点最近是 v3顶点。当选择了 2 号顶点后,dis[2](下标从0开始)的值就已经从“估计值”变为了“确定值”,即 v1顶点到 v3顶点的最短路程就是当前 dis[2]值。将V3加入到T中。 
为什么呢?因为目前离 v1顶点最近的是 v3顶点,并且这个图所有的边都是正数,那么肯定不可能通过第三个顶点中转,使得 v1顶点到 v3顶点的路程进一步缩短了。因为 v1顶点到其它顶点的路程肯定没有 v1到 v3顶点短.

OK,既然确定了一个顶点的最短路径,下面我们就要根据这个新入的顶点V3会有出度,发现以v3 为弧尾的有: ,那么我们看看路径:v1–v3–v4的长度是否比v1–v4短,其实这个已经是很明显的了,因为dis[3]代表的就是v1–v4的长度为无穷大,而v1–v3–v4的长度为:10+50=60,所以更新dis[3]的值,得到如下结果: 
技术分享图片

因此 dis[3]要更新为 60。这个过程有个专业术语叫做“松弛”。即 v1顶点到 v4顶点的路程即 dis[3],通过 这条边松弛成功。这便是 Dijkstra 算法的主要思想:通过“边”来松弛v1顶点到其余各个顶点的路程。

然后,我们又从除dis[2]和dis[0]外的其他值中寻找最小值,发现dis[4]的值最小,通过之前是解释的原理,可以知道v1到v5的最短距离就是dis[4]的值,然后,我们把v5加入到集合T中,然后,考虑v5的出度是否会影响我们的数组dis的值,v5有两条出度:和 ,然后我们发现:v1–v5–v4的长度为:50,而dis[3]的值为60,所以我们要更新dis[3]的值.另外,v1-v5-v6的长度为:90,而dis[5]为100,所以我们需要更新dis[5]的值。更新后的dis数组如下图: 
技术分享图片

然后,继续从dis中选择未确定的顶点的值中选择一个最小的值,发现dis[3]的值是最小的,所以把v4加入到集合T中,此时集合T={v1,v3,v5,v4},然后,考虑v4的出度是否会影响我们的数组dis的值,v4有一条出度:,然后我们发现:v1–v5–v4–v6的长度为:60,而dis[5]的值为90,所以我们要更新dis[5]的值,更新后的dis数组如下图: 
技术分享图片

然后,我们使用同样原理,分别确定了v6和v2的最短路径,最后dis的数组的值如下: 
技术分享图片

例题:

Aizu - ALDS1_12_B Single Source Shortest Path I

例题链接:https://vjudge.net/problem/Aizu-ALDS1_12_B

题目意思:

求给定加权图G =(V,E)的单源最短路径的成本 请以G的顶点0为起点,输出0到各顶点v的最短路径上各边权值的总和

输入:第一行输入G的顶点个数n。接下来n行按如下格式输入各顶点u的邻接表  u k v1 c1 v2 c2 v3 c3 ......

G各顶点编号分别为0至n-1。u代表顶点编号,k代表u的出度,vi(i=1,2,3...k)代表与u相邻的顶点编号v及u到v的有向边的权值c

按顺序输出各顶点编号v到0的最短距离

AC代码:

#include 
#include string.h>
#include using namespace std;
const int inf = 0x3f3f3f3f;

int main()
{
//    freopen("in.txt","r",stdin);
    int n,road[105][105],vis[105],u,k,e,d,dis[105],minroad;
    while(scanf("%d",&n)!=EOF)
    {
        memset(vis,0,sizeof(vis));
        memset(road,inf,sizeof(road));
        for(int i=0;i//把邻接表转成邻接矩阵存入
        {
            scanf("%d %d",&u,&k);
            road[u][u]=0;
            for(int j=0;j)
            {
                scanf("%d %d",&e,&d);
                road[u][e] = d;
            }
        }
        for(int i=0;i//初始化dis数组
            dis[i] = road[0][i];
        vis[0]=1;
        int flag=0;
        int i,j;
        while(1)
        {
            minroad = inf;
            flag = 0;
            for(i=0,j=0;i//找到当前dis数组中没有被标记过 且为最小的
            {
                if(vis[i]==0 && dis[i]minroad)
                {flag = 1; j=i; minroad = dis[i];}
            }
            if(flag == 0)break;//全部被标记过 跳出while循环
            vis[j] = 1;
            for(int i=0;i//比较更新dis数组的值
            {
                if(vis[i]==0 && (dis[j]+road[j][i])dis[i])
                    dis[i] = dis[j]+road[j][i];
            }
        }
        for(int i=0;i)
            printf("%d %d\n",i,dis[i]);
    }
    return 0;
}

 

最短路径---Dijkstra算法

标签:为什么   iostream   最小   ble   顶点   log   div   tps   jsb   

原文地址:https://www.cnblogs.com/20172674xi/p/9534950.html


评论


亲,登录后才可以留言!