全排列算法(递归)

2020-12-13 03:17

阅读:568

标签:space   tar   std   names   递归算法   color   经典   include   using   

  全排列算法是一种经典的递归算法。例如集合{a,b,c}的全排列为{(a,b,c)、(a,c,b)、(b,a,c)、(b,c,a)、(c,b,a)、(c,a,b)}共3!种。

  递归法求解的思路是先固定第一个元素,求剩下的全排列,求剩下的全拍列时,固定剩余元素中的第一个元素,再求剩下元素的全排列,直到就剩一个元素停止。

  例如求集合{a,b,c,d}的全排列。

  1、固定元素a求{b,c,d}元素的全排列

    (1)、固定元素b求{c,d}的全排列

      1)、固定元素c ,得到一个排列方式(a,b,c,d)

      2)、固定元素d,得到一种排列方式(a,b,d,c)

    (2)、固定元素c求{b,d}的全排列

      1)、固定元素b,得到一个排列方式(a,c,b,d)

      2)、固定元素d,得到一种排列方式(a,c,d,b)

    (3)、固定元素d求{b,c}的全排列

      1)、固定元素b,得到一个排列方式(a,d,b,c)

      2)、固定元素c,得到一种排列方式(a,d,c,b)

  经过上述步骤即可得到以a为第一个元素的全排列,再分别将b,c,d固定为第一元素重复上面过程即可得到{a,b,c,d}的全排列

代码如下:

#include using namespace std;

int count = 0;   //计数全排列的个数
void perm(char A[], int start, int end)//A是要排列的数组,start、end表示对A[start]与A[end]之间的元素进行全排列
{
    if (start == end)
    {
        for (int i = 0;i )
            cout "  ";
        cout  endl;
        count++;
    }
    else
    {
        for (int i = start; i )
        {
            swap(A[i],A[start]);
            perm(A, start + 1, end);
            swap(A[i], A[start]);
        }
    }
}
int main()
{
    char A[10]={"abcdefg"};
    perm(A,0,2);  //start = 0,end = 2表示对A[0]与A[2]之间的元素进行全排列,即对{a,b,c}进行全排列
    coutendl;
    return 0;
}

 

全排列算法(递归)

标签:space   tar   std   names   递归算法   color   经典   include   using   

原文地址:https://www.cnblogs.com/yichenxing/p/11072714.html


评论


亲,登录后才可以留言!