CCA算法实现和优化

2020-12-13 03:31

阅读:482

标签:时间   存储   自己   pen   rank   null   阶段   name   元素   

目录

  • CCA算法实现和优化
    • 代码框架
    • 基于并查集的实现与优化
      • 0. 最naive的并查集
      • 1. 基于并查集的CCA优化1:路径压缩
      • 2. 基于并查集的CCA优化2:基于rank做节点合并
      • 3. 基于并查集的CCA优化3:邻域数量减半
      • 4. 基于并查集的CCA优化4: 消除find函数的递归调用
      • 5. 基于并查集的CCA优化5: 就地计算而不调用find函数
      • 6. 基于并查集的CCA优化6: 就地计算而不调用union函数
      • 7. 基于并查集的CCA优化7: label重新编号优化
      • 8. 基于并查集的CCA优化8: 修改并查集节点id对应含义,并利用邻域对称性加速
    • 基于DFS算法的实现与优化
      • 1. 递归实现的DFS用于计算CCA
      • 2. 递归调用改为迭代
    • TODO

CCA算法实现和优化

基本思路是两种,一种是dfs,另一种是并查集(two-pass)。先考虑并查集的做法,不优化和优化,在大图(1280*720,~3000个CCA)上,速度相差巨大:30s->4ms (提升接近8000倍)

代码框架

#include 
#include 
#include 

#include "opencv2/opencv.hpp"
#include "fa_log.h"

//16*44
unsigned char test_data[] = {
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,3,3,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,3,3,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,0,0,4,4,4,4,4,1,1,1,0,0,5,5,5,5,5,3,3,3,3,3,3,3,3,3,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,0,0,4,4,4,4,4,1,1,1,0,0,5,5,5,5,5,3,3,3,3,3,3,3,3,3,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,0,0,4,4,4,0,0,0,0,0,0,0,5,5,5,0,0,0,0,0,0,0,3,3,3,3,
6,6,6,6,6,6,6,6,0,0,7,7,7,0,0,2,2,2,2,2,2,2,2,0,0,8,8,8,8,8,5,5,5,0,0,9,9,9,9,9,3,3,3,3,
6,6,6,6,6,6,6,6,0,0,7,7,7,0,0,2,2,2,2,2,2,2,2,0,0,8,8,8,8,8,5,5,5,0,0,9,9,9,9,9,3,3,3,3,
6,6,6,0,0,6,6,6,0,0,7,7,7,0,0,2,2,2,0,0,0,0,0,0,0,8,8,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
6,6,6,0,0,6,6,6,0,0,7,7,7,7,7,2,2,2,2,2,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
6,6,6,0,0,6,6,6,0,0,7,7,7,7,7,2,2,2,0,0,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,6,6,6,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
};

int cca_by_find_union_set(const unsigned char* image_data, int* label, int h, int w);

cv::Scalar icvprGetRandomColor()
{
    uchar r = 255 * (rand() / (1.0 + RAND_MAX));
    uchar g = 255 * (rand() / (1.0 + RAND_MAX));
    uchar b = 255 * (rand() / (1.0 + RAND_MAX));
    //printf("-- get color: (%d, %d, %d)\n", r, g, b);
    return cv::Scalar(b, g, r);
}
void icvprLabelColor(const cv::Mat& _labelImg, cv::Mat& _colorLabelImg)
{
    if (_labelImg.empty() ||
        _labelImg.type() != CV_32SC1)
    {
        return;
    }

    std::map colors;

    int rows = _labelImg.rows;
    int cols = _labelImg.cols;

    _colorLabelImg.release();
    _colorLabelImg.create(rows, cols, CV_8UC3);
    _colorLabelImg = cv::Scalar::all(0);

    for (int i = 0; i (i);
        uchar* data_dst = _colorLabelImg.ptr(i);
        for (int j = 0; j  1)
            {
                if (colors.count(pixelValue)  0) {
                test_data[i] = 255;
            }
        }
        binImg = cv::Mat(cv::Size(im_w, im_h), CV_8UC1);
        binImg.data = test_data;
        cca_test(binImg, CV_THRESH_BINARY);
    }
}

int main() {
    cca_test_main();

    return 0;
}

基于并查集的实现与优化

0. 最naive的并查集

// fus: find-union-set

// find root of specified node
int fus_find(int x, int* p){
    return x == p[x] ? x : fus_find(p[x], p);
}

// merge two nodes by changing its parent node
void fus_union(int a, int b, int* p) {
    p[fus_find(a, p)] = fus_find(b, p);
}

int cca_by_find_union_set(const unsigned char* image_data, int* label, int h, int w)
{
    // 1. first pass

    int cnt = 0;
    int i, j, k, idx;

    int neighbor_num = 4;
    int row, col, neighbor_idx;
    int shift_row[4] = { -1, 1,  0, 0 };
    int shift_col[4] = { 0,  0, -1, 1 };

    int* p = (int*)malloc(sizeof(int)*h*w);
    for (i = 0; i = h || col = w || image_data[neighbor_idx] != 1) continue;
                fus_union(idx, neighbor_idx, p);
            }
        }
    }

    int* bowl = (int*)malloc(sizeof(int)*h*w);
    memset(bowl, 0, sizeof(int)*h*w);
    int label_cnt = 0;
    for (i = 0; i 

VS2017下的时间开销:

图片 图像大小 CCA个数 时间
(naive,Release)
icvpr.jpg 90*364 10 6ms
qintu.jpg 165*652 17 9ms
cca_big.jpg 720*1280 3807 31832ms

本来是想Debug模式测试的,但是cca_big.jpg是在太慢就用Release模式了。

1. 基于并查集的CCA优化1:路径压缩

并查集的find函数使用路径压缩,Release模式下1280x720大图3087个cca,时间开销从31832ms减少到22ms,Debug模式下为125ms。代码修改很简单,从原来的:

int fus_find(int x, int* p) {
    return x == p[x] ? x : fus_find(p[x], p);
}

修改为

int fus_find(int x, int* p) {
    return x == p[x] ? x : p[x]=fus_find(p[x], p);
}
图片 图像大小 CCA个数 时间
(naive,
Release)
时间
(opt1,
Release)
时间
(opt1,
Debug)
icvpr.jpg 90*364 10 6ms 1ms 2ms
qintu.jpg 165*652 17 9ms 1ms 4ms
cca_big.jpg 720*1280 3807 31832ms 22ms 125ms

2. 基于并查集的CCA优化2:基于rank做节点合并

这次优化的是并查集的union函数,如果需要合并则根据rank大小来合并,减少了树的层级。代码从:

void fus_union(int a, int b, int* p) {
    p[fus_find(a, p)] = fus_find(b, p);
}

修改为:

void fus_union(int a, int b, int* p, int* rank) {
    int ra = fus_find(a, p);
    int rb = fus_find(b, p);
    if (ra == rb)  return;
    if (rank[ra] > rank[rb]) {
        p[rb] = ra;
    }
    else {
        if (rank[ra] == rank[rb]) {
            rank[rb]++;
        }
        p[ra] = rb;
    }
}

其中参数rank需要在主调函数中初始化,数组个数和p数组个数相同,初始值都设定为1:

int* rank = (int*)malloc(sizeof(int)*h*w);

...

    for (i = 0; i 

时间开销上看,比上一次要快,但是Debug模式下cca_big.jpg这张图仍然很捉急。

图片 图像大小 CCA个数 时间
(naive,
Release)
时间
(opt1,
Release)
时间
(opt1,
Debug)
时间
(opt2,
Release)
时间
(opt,
Debug)
icvpr.jpg 90*364 10 6ms 1ms 2ms 0ms 3ms
qintu.jpg 165*652 17 9ms 1ms 4ms 0ms 3ms
cca_big.jpg 720*1280 3807 31832ms 22ms 125ms 15ms 97ms

3. 基于并查集的CCA优化3:邻域数量减半

考虑到遍历整张图像时,左边和上边的像素都访问过了,因而每个像素考察周边元素做union操作时,只需要考虑左方和上方(目前仅考虑4邻域,8邻域与之做法类似)。关键代码修改:

    int neighbor_num = 4;
    int shift_row[4] = { -1, 1,  0, 0 };
    int shift_col[4] = { 0,  0, -1, 1 };

修改为:

    int neighbor_num = 2;
    int shift_row[2] = { 0, -1 };
    int shift_col[2] = {-1,  0 };
图片 图像大小 CCA个数 时间
(naive,
Release)
时间
(opt2,
Release)
时间
(opt2,
Debug)
时间
(opt3,
Release)
时间
(opt3,
Debug)
icvpr.jpg 90*364 10 6ms 0ms 3ms 0ms 1ms
qintu.jpg 165*652 17 9ms 0ms 3ms 0ms 2ms
cca_big.jpg 720*1280 3807 31832ms 15ms 97ms 11ms 57ms

对于cca_big.jpg这张图,Release模式下从15ms降到11ms,Debug模式下则从97ms减少到57ms,减少了接近一半。

4. 基于并查集的CCA优化4: 消除find函数的递归调用

使用递归函数的好处是思路清晰,缺点是如果调用层次过于深则容易产生stack overflow(栈溢出)问题。例如VS2017下栈空间大小默认值为1MB(1073741824),需要更大的栈则要修改编译链接选项。消除递归函数同时还能一定程度上减少时间开销。代码修改,从原来的:

int fus_find(int x, int* p) {
    return x == p[x] ? x : p[x]=fus_find(p[x], p);
}

修改为:

int fus_find(int x, int* p) {
    int a = x;
    while (a != p[a]) {
        a = p[a];
    }

    while (x != p[x]) {
        x = p[x];
        p[x] = a;
    }
    return a;
}
图片 图像大小 CCA个数 时间
(naive,
Release)
时间
(opt3,
Release)
时间
(opt3,
Debug)
时间
(opt4,
Release)
时间
(opt4,
Debug)
icvpr.jpg 90*364 10 6ms 0ms 1ms 1ms 1ms
qintu.jpg 165*652 17 9ms 0ms 2ms 1ms 2ms
cca_big.jpg 720*1280 3807 31832ms 11ms 57ms 9ms 48ms

这次优化的结果是,小图片(icvpr.jpg, qingtu.jpg)在Release模式下时间开销从0ms(实际上小于1ms)增加到1ms,增加不明显;而cca_big.jpg这张大图无论是Release还是Debug模式,时间开销都有减少,分别为9ms和2ms。但是,Debug模式下的48ms还是太慢。

5. 基于并查集的CCA优化5: 就地计算而不调用find函数

前一步,已经把find函数从递归改成非递归;考虑到find函数在union函数和算法主体函数中被多次调用,就地展开计算替代函数调用可以加速计算。

代码修改有两处,第一个是union函数,原来的:

#define OPT5
void fus_union(int a, int b, int* p, int* rank) {
    int ra = fus_find(a, p);
    int rb = fus_find(b, p);

    if (ra == rb)  return;
    if (rank[ra] > rank[rb]) {
        p[rb] = ra;
    }
    else {
        if (rank[ra] == rank[rb]) {
            rank[rb]++;
        }
        p[ra] = rb;
    }
}

修改为:

#define OPT5
void fus_union(int a, int b, int* p, int* rank) {
    while (a != p[a]) {
        a = p[a];
    }
    int ra = a;
    while (b != p[b]) {
        b = p[b];
    }
    int rb = b;

    if (ra == rb)  return;
    if (rank[ra] > rank[rb]) {
        p[rb] = ra;
    }
    else {
        if (rank[ra] == rank[rb]) {
            rank[rb]++;
        }
        p[ra] = rb;
    }
}

第二处修改:算法主体函数中的后处理部分,原来的:

        int t = fus_find(i, p);

修改为:

        int t = i;
        while (p[t] != t) {
            t = p[t];
        }
图片 图像大小 CCA个数 时间
(naive,
Release)
时间
(opt4,
Release)
时间
(opt4,
Debug)
时间
(opt5,
Release)
时间
(opt5,
Debug)
icvpr.jpg 90*364 10 6ms 1ms 1ms 0ms 1ms
qintu.jpg 165*652 17 9ms 1ms 2ms 0ms 2ms
cca_big.jpg 720*1280 3807 31832ms 9ms 48ms 9ms 28ms

Release模式下没有明显变化,Debug模式下大图cca_big.jpg时间开销从48ms减少到28ms。

6. 基于并查集的CCA优化6: 就地计算而不调用union函数

类似于前一个优化步骤把find函数就地计算而不去调用。现在把union函数就地展开,Debug模式下cca_big.jpg速度从28ms提升到22ms。不过算法主体函数的双重for循环也变得ugly:

    int a, b;
    for (i = 0; i = h || col = w || image_data[neighbor_idx] != 1) continue;
                //fus_union(idx, neighbor_idx, p, rank);
                a = idx; b = neighbor_idx;
                while (a != p[a]){
                    a = p[a];
                }
                int ra = a;

                while (b != p[b]) {
                    b = p[b];
                }
                int rb = b;

                if (ra == rb) continue;

                if (rank[ra] > rank[rb]) {
                    p[rb] = ra;
                }
                else {
                    if (rank[ra] == rank[rb]) {
                        rank[rb]++;
                    }
                    p[ra] = rb;
                }
            }
        }
    }
图片 图像大小 CCA个数 时间
(naive,
Release)
时间
(opt5,
Release)
时间
(opt5,
Debug)
时间
(opt6,
Release)
时间
(opt6,
Debug)
icvpr.jpg 90*364 10 6ms 0ms 1ms 1ms 1ms
qintu.jpg 165*652 17 9ms 0ms 2ms 1ms 1ms
cca_big.jpg 720*1280 3807 31832ms 9ms 28ms 8ms 22ms

7. 基于并查集的CCA优化7: label重新编号优化

先前是做两次for循环:

    int* bowl = (int*)malloc(sizeof(int)*h*w);
    memset(bowl, 0, sizeof(int)*h*w);
    
    for (i = 0; i 

现在改成一次循环:

    int* bowl = (int*)malloc(sizeof(int)*h*w);
    memset(bowl, 0, sizeof(int)*h*w);
    int x;
    for (i = 0; i 
opt6,debug opt7,debug
1ms 1ms
1ms 1ms
22ms 20~21ms

大图快了1~2ms。这个阶段再优化,似乎要把几个邻域的for循环展开,并且把union()过程拆分合并重新组合。这对于扩展到8邻域似乎不太友好。先贴一下目前的整体代码。

#include 
#include 
#include 

#include "opencv2/opencv.hpp"
#include "fa_log.h"

//16*44
unsigned char test_data[] = {
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,3,3,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,3,3,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,0,0,4,4,4,4,4,1,1,1,0,0,5,5,5,5,5,3,3,3,3,3,3,3,3,3,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,0,0,4,4,4,4,4,1,1,1,0,0,5,5,5,5,5,3,3,3,3,3,3,3,3,3,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,0,0,4,4,4,0,0,0,0,0,0,0,5,5,5,0,0,0,0,0,0,0,3,3,3,3,
6,6,6,6,6,6,6,6,0,0,7,7,7,0,0,2,2,2,2,2,2,2,2,0,0,8,8,8,8,8,5,5,5,0,0,9,9,9,9,9,3,3,3,3,
6,6,6,6,6,6,6,6,0,0,7,7,7,0,0,2,2,2,2,2,2,2,2,0,0,8,8,8,8,8,5,5,5,0,0,9,9,9,9,9,3,3,3,3,
6,6,6,0,0,6,6,6,0,0,7,7,7,0,0,2,2,2,0,0,0,0,0,0,0,8,8,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
6,6,6,0,0,6,6,6,0,0,7,7,7,7,7,2,2,2,2,2,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
6,6,6,0,0,6,6,6,0,0,7,7,7,7,7,2,2,2,0,0,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,6,6,6,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
};

int cca_by_find_union_set(const unsigned char* image_data, int* label, int h, int w);

cv::Scalar icvprGetRandomColor()
{
    uchar r = 255 * (rand() / (1.0 + RAND_MAX));
    uchar g = 255 * (rand() / (1.0 + RAND_MAX));
    uchar b = 255 * (rand() / (1.0 + RAND_MAX));
    //printf("-- get color: (%d, %d, %d)\n", r, g, b);
    return cv::Scalar(b, g, r);
}
void icvprLabelColor(const cv::Mat& _labelImg, cv::Mat& _colorLabelImg)
{
    if (_labelImg.empty() ||
        _labelImg.type() != CV_32SC1)
    {
        return;
    }

    std::map colors;

    int rows = _labelImg.rows;
    int cols = _labelImg.cols;

    _colorLabelImg.release();
    _colorLabelImg.create(rows, cols, CV_8UC3);
    _colorLabelImg = cv::Scalar::all(0);

    for (int i = 0; i (i);
        uchar* data_dst = _colorLabelImg.ptr(i);
        for (int j = 0; j  1)
            {
                if (colors.count(pixelValue)  0) {
                test_data[i] = 255;
            }
        }
        binImg = cv::Mat(cv::Size(im_w, im_h), CV_8UC1);
        binImg.data = test_data;
        cca_test(binImg, CV_THRESH_BINARY);
    }
}

// int fus_find(int x, int* p) {
//  int a = x;
//  while (a != p[a]) {
//      a = p[a];
//  }

//  while (x != p[x]) {
//      x = p[x];
//      p[x] = a;
//  }
//  return a;
// }

// void fus_union(int a, int b, int* p, int* rank) {
//  int x, t;
    
//  x = a;
//  while (x != p[x]) {
//      x = p[x];
//  }
//  int ra = x;
//  x = a;
//  while (x != p[x]) {
//      t = p[x];
//      p[x] = ra;
//      x = t;
//  }
//  p[a] = ra;

//  x = b;
//  while (x != p[x]) {
//      x = p[x];
//  }
//  int rb = x;
//  x = b;
//  while (x != p[x]) {
//      t = p[x];
//      p[x] = rb;
//      x = t;
//  }
//  p[b] = rb;

//  if (ra == rb)  return;
    
//  if (rank[ra] > rank[rb]) {
//      p[rb] = ra;
//  }
//  else {
//      if (rank[ra] == rank[rb]) {
//          rank[rb]++;
//      }
//      p[ra] = rb;
//  }
// }


int cca_by_find_union_set(const unsigned char* image_data, int* label, int h, int w)
{
    // 1. first pass
    int cnt = 0;
    int i, j, k, idx;

    int row, col, neighbor_idx;
    //int neighbor_num = 4;
    //int shift_row[4] = { -1, 1,  0, 0 };
    //int shift_col[4] = { 0,  0, -1, 1 };

    int neighbor_num = 2;
    int shift_row[2] = { 0, -1 };
    int shift_col[2] = {-1,  0 };

    int* p = (int*)malloc(sizeof(int)*h*w);
    int* rank = (int*)malloc(sizeof(int)*h*w);
    for (i = 0; i = h || col = w || image_data[neighbor_idx] != 1) continue;
                
                a = idx; b = neighbor_idx;
                while (a != p[a]) {
                    a = p[a];
                }
                int ra = a;

                while (b != p[b]) {
                    b = p[b];
                }
                int rb = b;

                if (ra == rb) continue;

                if (rank[ra] > rank[rb]) {
                    p[rb] = ra;
                }
                else {
                    if (rank[ra] == rank[rb]) {
                        rank[rb]++;
                    }
                    p[ra] = rb;
                }
                
            }
        }
    }

    int label_cnt = 0;

    int* bowl = (int*)malloc(sizeof(int)*h*w);
    memset(bowl, 0, sizeof(int)*h*w);
    int x;
    for (i = 0; i 

8. 基于并查集的CCA优化8: 修改并查集节点id对应含义,并利用邻域对称性加速

前面的做法,都是把像素id作为并查集的节点id。这看起来的确符合等价类的性质:初始时p[x]=x,满足自反性,每个节点都是自己所在等价类的编号。

现在换个做法,把每个像素点对应的label作为并查集的节点id,则并查集现在是对于label做等价类计算与存储。则像素对应的id(1维数组索引)不再被绑定在一起。

此外,考虑到4邻域、8邻域都是对称结构。利用二重循环遍历图像像素时,每个像素被遍历过的邻域和没有被遍历过的邻域是对称的。则只需要考虑遍历过的邻域即可,理论上看起来计算量大概减半的样子。

主要参考了 C代码二值图像连通区域标记 这篇博客,我修改后速度略慢于改实现,但能够处理8邻域,代码看起来可读性也更高。

代码如下:

int cca_by_find_union_set(const unsigned char* image_data, int* label, int h, int w)
{
    // 1. first pass
    int i, j, k;

    //int neighbor_num = 2; //4 neighborhood only need to consider two previous pixels
    int neighbor_num = 4; //8 neighborhood only need to consider 4 previous pixels
    int neighbor[]  = { -1, -w, -w-1, -w+1};
    int shift_row[] = { 0, -1, -1,    -1};
    int shift_col[] = {-1,  0, -1,     1};

    size_t buf_sz = sizeof(int)*h*w;
    int* p = (int*)malloc(buf_sz);
    int* rank = (int*)malloc(buf_sz);
    
    memset(p, 0, buf_sz);
    memset(rank, 0, buf_sz);
    memset(label, 0, buf_sz);

    int lb = 1;
    const unsigned char* bw = image_data;
    int* mark = label;

    int a, b, t, ra, rb, row, col;
    for (i = 0; i = h || col = w) continue;

                // if neighbor is labeled 0, ignore this neighbor
                a = mark[j+neighbor[k]];
                if (!a) continue; 

                // current pixel is not labeled, and neighbor is labeled
                // label current pixel according to this neighbor
                if (!mark[j]) {
                    t = a;
                    while (a != p[a]) {
                        a = p[a];
                    }
                    p[t] = a;
                    mark[j] = a;
                }
                else if (mark[j] != a) {
                    // merge neighbor's label with current pixel's label
                    mark[j + neighbor[k]] = mark[j];
                    
                    t = a;
                    while (a != p[a]) {
                        a = p[a];
                    }
                    p[t] = a;

                    b = mark[j];

                    //if (a  rank[b]) {
                        p[b] = a;
                    }
                    else {
                        if (rank[a] == rank[b]) {
                            rank[b]++;
                        }
                        p[a] = b;
                    }
                }
                has_neighbor = true;
            }
            if (!has_neighbor) {
                mark[j] = lb;
                p[lb] = lb;
                lb++;
            }
        }
    }

    // 2. second pass
    int label_cnt = 0;
    for (i = 1; i = 0) {
            t = p[t];
        }
        // set the value of label i
        p[i] = p[t];
    }
    //negative to positive
    for (i = 1; i 
opt6,debug opt7,debug opt8,debug,8邻 opt8,release,8邻 opt8,debug,4邻 opt8,release,4邻
1ms 1ms 1ms 0ms 0ms 0ms
1ms 1ms 1ms 1ms 1ms 1ms
22ms 20~21ms 17ms 6ms 12ms 4ms

基于DFS算法的实现与优化

1. 递归实现的DFS用于计算CCA

DFS的经典题目是UVA572 Oil Deposits,直接递归调用DFS,写起来快,直接AC。稍微修改一下,就能处理CCA问题。和前面基于并查集的实现使用相同的测试图片,测试时间也比较快:

debug,8邻 release,8邻 debug,4邻 release,4邻
1ms 0ms 0ms 1ms
2ms 0ms 1ms 0ms
67ms 28ms 46ms 24ms

唯一需要说明的问题是:递归调用次数很多,VS2017下默认1M的占空间根本不够用,我开的是3073741824大小。

void cca_dfs(int x, int y, int label_cnt, int* vis, const unsigned char* image_data, int h, int w)
{
    if (x = h || y = w) return;
    int idx = x * w + y;
    if (vis[idx] > 0 || image_data[idx] != 1) return;
    vis[idx] = label_cnt;
    for (int i = -1; i 

2. 递归调用改为迭代

初步尝试了下,时间开销反而变大了:40ms->1000ms。可怕。

TODO

和OpenCV中的实现进行性能比较。

CCA算法实现和优化

标签:时间   存储   自己   pen   rank   null   阶段   name   元素   

原文地址:https://www.cnblogs.com/zjutzz/p/11048377.html


评论


亲,登录后才可以留言!