Java-Class-I:java.util.List
2020-12-13 03:56
标签:rms ice bounds 法律 src contains htm report temp 1.1、 1.2、 2、
*
* Unlike sets, lists typically allow duplicate elements. More formally,
* lists typically allow pairs of elements e1 and e2
* such that e1.equals(e2), and they typically allow multiple
* null elements if they allow null elements at all. It is not inconceivable
* that someone might wish to implement a list that prohibits duplicates, by
* throwing runtime exceptions when the user attempts to insert them, but we
* expect this usage to be rare.
*
* The List interface places additional stipulations, beyond those
* specified in the Collection interface, on the contracts of the
* iterator, add, remove, equals, and
* hashCode methods. Declarations for other inherited methods are
* also included here for convenience.
*
* The List interface provides four methods for positional (indexed)
* access to list elements. Lists (like Java arrays) are zero based. Note
* that these operations may execute in time proportional to the index value
* for some implementations (the LinkedList class, for
* example). Thus, iterating over the elements in a list is typically
* preferable to indexing through it if the caller does not know the
* implementation.
*
* The List interface provides a special iterator, called a
* ListIterator, that allows element insertion and replacement, and
* bidirectional access in addition to the normal operations that the
* Iterator interface provides. A method is provided to obtain a
* list iterator that starts at a specified position in the list.
*
* The List interface provides two methods to search for a specified
* object. From a performance standpoint, these methods should be used with
* caution. In many implementations they will perform costly linear
* searches.
*
* The List interface provides two methods to efficiently insert and
* remove multiple elements at an arbitrary point in the list.
*
* Note: While it is permissible for lists to contain themselves as elements,
* extreme caution is advised: the equals and hashCode
* methods are no longer well defined on such a list.
*
* Some list implementations have restrictions on the elements that
* they may contain. For example, some implementations prohibit null elements,
* and some have restrictions on the types of their elements. Attempting to
* add an ineligible element throws an unchecked exception, typically
* NullPointerException or ClassCastException. Attempting
* to query the presence of an ineligible element may throw an exception,
* or it may simply return false; some implementations will exhibit the former
* behavior and some will exhibit the latter. More generally, attempting an
* operation on an ineligible element whose completion would not result in
* the insertion of an ineligible element into the list may throw an
* exception or it may succeed, at the option of the implementation.
* Such exceptions are marked as "optional" in the specification for this
* interface.
*
* This interface is a member of the
*
* Java Collections Framework.
*
* The returned array will be "safe" in that no references to it are
* maintained by this list. (In other words, this method must
* allocate a new array even if this list is backed by an array).
* The caller is thus free to modify the returned array.
*
* This method acts as bridge between array-based and collection-based
* APIs.
*
* If the list fits in the specified array with room to spare (i.e.,
* the array has more elements than the list), the element in the array
* immediately following the end of the list is set to null.
* (This is useful in determining the length of the list only if
* the caller knows that the list does not contain any null elements.)
*
* Like the { Suppose x is a list known to contain only strings.
* The following code can be used to dump the list into a newly
* allocated array of String:
*
* Lists that support this operation may place limitations on what
* elements may be added to this list. In particular, some
* lists will refuse to add null elements, and others will impose
* restrictions on the type of elements that may be added. List
* classes should clearly specify in their documentation any restrictions
* on what elements may be added.
*
* All elements in this list must be mutually comparable using the
* specified comparator (that is, { If the specified comparator is { This list must be modifiable, but need not be resizable.
*
* @implSpec
* The default implementation obtains an array containing all elements in
* this list, sorts the array, and iterates over this list resetting each
* element from the corresponding position in the array. (This avoids the
* n2 log(n) performance that would result from attempting
* to sort a linked list in place.)
*
* @implNote
* This implementation is a stable, adaptive, iterative mergesort that
* requires far fewer than n lg(n) comparisons when the input array is
* partially sorted, while offering the performance of a traditional
* mergesort when the input array is randomly ordered. If the input array
* is nearly sorted, the implementation requires approximately n
* comparisons. Temporary storage requirements vary from a small constant
* for nearly sorted input arrays to n/2 object references for randomly
* ordered input arrays.
*
* The implementation takes equal advantage of ascending and
* descending order in its input array, and can take advantage of
* ascending and descending order in different parts of the same
* input array. It is well-suited to merging two or more sorted arrays:
* simply concatenate the arrays and sort the resulting array.
*
* The implementation was adapted from Tim Peters‘s list sort for Python
* (
* TimSort). It uses techniques from Peter McIlroy‘s "Optimistic
* Sorting and Information Theoretic Complexity", in Proceedings of the
* Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp 467-474,
* January 1993.
*
*
*
* This method eliminates the need for explicit range operations (of
* the sort that commonly exist for arrays). Any operation that expects
* a list can be used as a range operation by passing a subList view
* instead of a whole list. For example, the following idiom
* removes a range of elements from a list:
*
*
* The semantics of the list returned by this method become undefined if
* the backing list (i.e., this list) is structurally modified in
* any way other than via the returned list. (Structural modifications are
* those that change the size of this list, or otherwise perturb it in such
* a fashion that iterations in progress may yield incorrect results.)
*
* The { Java-Class-I:java.util.List 标签:rms ice bounds 法律 src contains htm report temp 原文地址:https://www.cnblogs.com/storebook/p/11095508.html
ylbtech-Java-Class-I:java.util.List
1.返回顶部
import java.util.ArrayList;
import java.util.List;
List
newList.add(3);
2.返回顶部
3.返回顶部
4.返回顶部
/*
* Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
* ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*/
package java.util;
import java.util.function.UnaryOperator;
/**
* An ordered collection (also known as a sequence). The user of this
* interface has precise control over where in the list each element is
* inserted. The user can access elements by their integer index (position in
* the list), and search for elements in the list.
*
* Note that toArray(new Object[0]) is identical in function to
* toArray().
*
* @param a the array into which the elements of this list are to
* be stored, if it is big enough; otherwise, a new array of the
* same runtime type is allocated for this purpose.
* @return an array containing the elements of this list
* @throws ArrayStoreException if the runtime type of the specified array
* is not a supertype of the runtime type of every element in
* this list
* @throws NullPointerException if the specified array is null
*/
{
@code
* String[] y = x.toArray(new String[0]);
* }{
@code
* final ListIterator{
@code
* int hashCode = 1;
* for (E e : list)
* hashCode = 31*hashCode + (e==null ? 0 : e.hashCode());
* }
* This ensures that list1.equals(list2) implies that
* list1.hashCode()==list2.hashCode() for any two lists,
* list1 and list2, as required by the general
* contract of {@link Object#hashCode}.
*
* @return the hash code value for this list
* @see Object#equals(Object)
* @see #equals(Object)
*/
int hashCode();
// Positional Access Operations
/**
* Returns the element at the specified position in this list.
*
* @param index index of the element to return
* @return the element at the specified position in this list
* @throws IndexOutOfBoundsException if the index is out of range
* (index < 0 || index >= size())
*/
E get(int index);
/**
* Replaces the element at the specified position in this list with the
* specified element (optional operation).
*
* @param index index of the element to replace
* @param element element to be stored at the specified position
* @return the element previously at the specified position
* @throws UnsupportedOperationException if the set operation
* is not supported by this list
* @throws ClassCastException if the class of the specified element
* prevents it from being added to this list
* @throws NullPointerException if the specified element is null and
* this list does not permit null elements
* @throws IllegalArgumentException if some property of the specified
* element prevents it from being added to this list
* @throws IndexOutOfBoundsException if the index is out of range
* (index < 0 || index >= size())
*/
E set(int index, E element);
/**
* Inserts the specified element at the specified position in this list
* (optional operation). Shifts the element currently at that position
* (if any) and any subsequent elements to the right (adds one to their
* indices).
*
* @param index index at which the specified element is to be inserted
* @param element element to be inserted
* @throws UnsupportedOperationException if the add operation
* is not supported by this list
* @throws ClassCastException if the class of the specified element
* prevents it from being added to this list
* @throws NullPointerException if the specified element is null and
* this list does not permit null elements
* @throws IllegalArgumentException if some property of the specified
* element prevents it from being added to this list
* @throws IndexOutOfBoundsException if the index is out of range
* (index < 0 || index > size())
*/
void add(int index, E element);
/**
* Removes the element at the specified position in this list (optional
* operation). Shifts any subsequent elements to the left (subtracts one
* from their indices). Returns the element that was removed from the
* list.
*
* @param index the index of the element to be removed
* @return the element previously at the specified position
* @throws UnsupportedOperationException if the remove operation
* is not supported by this list
* @throws IndexOutOfBoundsException if the index is out of range
* (index < 0 || index >= size())
*/
E remove(int index);
// Search Operations
/**
* Returns the index of the first occurrence of the specified element
* in this list, or -1 if this list does not contain the element.
* More formally, returns the lowest index i such that
* (o==null ? get(i)==null : o.equals(get(i))),
* or -1 if there is no such index.
*
* @param o element to search for
* @return the index of the first occurrence of the specified element in
* this list, or -1 if this list does not contain the element
* @throws ClassCastException if the type of the specified element
* is incompatible with this list
* (optional)
* @throws NullPointerException if the specified element is null and this
* list does not permit null elements
* (optional)
*/
int indexOf(Object o);
/**
* Returns the index of the last occurrence of the specified element
* in this list, or -1 if this list does not contain the element.
* More formally, returns the highest index i such that
* (o==null ? get(i)==null : o.equals(get(i))),
* or -1 if there is no such index.
*
* @param o element to search for
* @return the index of the last occurrence of the specified element in
* this list, or -1 if this list does not contain the element
* @throws ClassCastException if the type of the specified element
* is incompatible with this list
* (optional)
* @throws NullPointerException if the specified element is null and this
* list does not permit null elements
* (optional)
*/
int lastIndexOf(Object o);
// List Iterators
/**
* Returns a list iterator over the elements in this list (in proper
* sequence).
*
* @return a list iterator over the elements in this list (in proper
* sequence)
*/
ListIterator{
@code
* list.subList(from, to).clear();
* }
* Similar idioms may be constructed for indexOf and
* lastIndexOf, and all of the algorithms in the
* Collections class can be applied to a subList.
5.返回顶部
6.返回顶部
作者:ylbtech
出处:http://ylbtech.cnblogs.com/
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。