排序算法之归并排序

2020-12-13 04:13

阅读:607

标签:递归函数   开始   列表   针对   image   选择   while   else   div   

一、原理

  归并排序(Merge sort)是建立在归并操作上的一种有效的排序算法。将已有序的子序列合并,得到完全有序的序列。如下图:

技术图片

  归并过程:

技术图片

两个指针的元素比较大小,小的元素就会被放入临时列表中,最后的结果就是:

技术图片

算法步骤:

(1)申请临时空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列;

(2)设定两个指针,最初位置分别为两个已经排序序列的起始位置,如上图的左侧2和右侧3的位置

(3)比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置;

(4)重复步骤 3 直到某一指针达到序列尾;

(5)将另一序列剩下的所有元素直接复制到合并序列尾。

二、实现

针对任意个前后有序的序列,将其合并为整个有序的序列,可以实现的代码如下:

def merge(li,start,mid,last):
    """
    :param li: 传入的序列
    :param start: 序列第一个位置的索引
    :param mid: 序列中间位置的索引
    :param last: 序列最后一个元素的索引
    :return:
    """
    i=start #左边开始指针的位置
    j=mid+1 #右边开始指针的位置

    temp=[] #申请临时空间
    while iand j#当两个指针都没有移动到序列尾部
        if li[i]li[j]:
            temp.append(li[i])
            i+=1
        else:
            temp.append(li[j])
            j+=1
    while i#当右边的指针移动到尾部,将左侧的剩下元素全部拷贝到temp
        temp.append(li[i])
        i+=1
    while j#当左边的指针移动到尾部,将右侧的剩下元素全部拷贝到temp
        temp.append(li[j])
        j+=1

    li[start:last+1]=temp #将临时列表中的元素再赋给li列表,节约空间

li=[2,4,7,9,3,5,6,8]
merge(li,0,3,7)
print(li) #[2, 3, 4, 5, 6, 7, 8, 9]

 上述算法进行的前提序列前后两段已经是有序的,对于任意一个序列如何使用这种算法呢?使用先分解后归并的思想。

技术图片

  • 分解:将序列越分越小,直至分成一个元素。
  • 终止条件:一个元素是有序的。
  • 归并:将两个有序序表进行合成一个有序序列。

实现代码:

def merge(li,start,mid,last):
    """
    :param li: 传入的序列
    :param start: 序列第一个位置的索引
    :param mid: 序列中间位置的索引
    :param last: 序列最后一个元素的索引
    :return:
    """
    i=start #左边开始指针的位置
    j=mid+1 #右边开始指针的位置

    temp=[] #申请临时空间
    while iand j#当两个指针都没有移动到序列尾部
        if li[i]li[j]:
            temp.append(li[i])
            i+=1
        else:
            temp.append(li[j])
            j+=1
    while i#当右边的指针移动到尾部,将左侧的剩下元素全部拷贝到temp
        temp.append(li[i])
        i+=1
    while j#当左边的指针移动到尾部,将右侧的剩下元素全部拷贝到temp
        temp.append(li[j])
        j+=1

    li[start:last+1]=temp #将临时列表中的元素再赋给li列表,节约空间


def mergeSort(li,start,last):
    if start#至少两个元素,一个元素是有序的
        mid=(start+last)//2 #取整
        mergeSort(li,start,mid) #对左侧元素进行分解,当进行分解到一个元素时,不满足 start
        mergeSort(li,mid+1,last)
        merge(li,start,mid,last)

li=[6,2,1,8,0,9,5]
mergeSort(li,0,len(li)-1)
print(li)#[0, 1, 2, 5, 6, 8, 9]

 

排序算法之归并排序

标签:递归函数   开始   列表   针对   image   选择   while   else   div   

原文地址:https://www.cnblogs.com/shenjianping/p/11104497.html


评论


亲,登录后才可以留言!