带你手写基于 Spring 的可插拔式 RPC 框架(三)通信协议模块
2020-12-13 05:06
Netty 模型的客户端和服务端。
基于 Netty 的服务端,里面的编码器和解码器是我们自己实现的,大家可以先用我注释掉的那部分,等我们写到编码解码器的时候再替换。
public class NettyServer {
private static NettyServer INSTANCE = new NettyServer();
private static Executor executor = Executors.newCachedThreadPool();
private final static int MESSAGE_LENGTH = 4;
private NettyServer(){};
public static NettyServer getInstance(){
return INSTANCE;
}
private SerializeType serializeType = SerializeType.queryByType(Configuration.getInstance().getSerialize());
public static void submit(Runnable t){
executor.execute(t);
}
public void start(String host, Integer port){
EventLoopGroup bossGroup = new NioEventLoopGroup(1);
EventLoopGroup workerGroup = new NioEventLoopGroup();
try{
final ServerBootstrap bootstrap = new ServerBootstrap();
bootstrap.group(bossGroup,workerGroup)
.channel(NioServerSocketChannel.class)
.option(ChannelOption.SO_BACKLOG, 128)
.childOption(ChannelOption.SO_KEEPALIVE, true)
.childHandler(new ChannelInitializer(){
@Override
protected void initChannel(SocketChannel arg0) throws Exception {
ChannelPipeline pipeline = arg0.pipeline();
//ObjectDecoder的基类半包解码器LengthFieldBasedFrameDecoder的报文格式保持兼容。因为底层的父类LengthFieldBasedFrameDecoder
//的初始化参数即为super(maxObjectSize, 0, 4, 0, 4);
// pipeline.addLast(new LengthFieldBasedFrameDecoder(Integer.MAX_VALUE, 0, NettyServer.MESSAGE_LENGTH, 0, NettyServer.MESSAGE_LENGTH));
//利用LengthFieldPrepender回填补充ObjectDecoder消息报文头
// pipeline.addLast(new LengthFieldPrepender(NettyServer.MESSAGE_LENGTH));
// pipeline.addLast(new ObjectEncoder());
//考虑到并发性能,采用weakCachingConcurrentResolver缓存策略。一般情况使用:cacheDisabled即可
// pipeline.addLast(new ObjectDecoder(Integer.MAX_VALUE, ClassResolvers.weakCachingConcurrentResolver(this.getClass().getClassLoader())));
//注册解码器NettyDecoderHandler
pipeline.addLast(new NettyDecoderHandler(RpcRequest.class, serializeType));
//注册编码器NettyEncoderHandler
pipeline.addLast(new NettyEncoderHandler(serializeType));
pipeline.addLast("handler", new NettyServerHandler());
}
});
Channel channel = bootstrap.bind(host, port).sync().channel();
System.out.println("Server start listen at " + port);
}catch(Exception e){
bossGroup.shutdownGracefully();
workerGroup.shutdownGracefully();
}
}
}
服务端对应的 handler,netty 都是这种 handler 模式,handler 里面也是将这个接收的 request 放入线程池中处理。
public class NettyServerHandler extends SimpleChannelInboundHandler {
private ChannelHandlerContext context;
@Override
protected void channelRead0(ChannelHandlerContext ctx, RpcRequest rpcRequest) throws Exception {
System.out.println("server channelRead...");
System.out.println(ctx.channel().remoteAddress() + "->server:" + rpcRequest.toString());
InvokeTask it = new InvokeTask(rpcRequest,ctx);
NettyServer.submit(it);
}
@Override
public void handlerAdded(ChannelHandlerContext ctx) throws Exception{
this.context = ctx;
}
}
给出 InvokeTask 的对应实现。
public class InvokeTask implements Runnable{
private RpcRequest invocation;
private ChannelHandlerContext ctx;
public InvokeTask(RpcRequest invocation,ChannelHandlerContext ctx) {
super();
this.invocation = invocation;
this.ctx = ctx;
}
@Override
public void run() {
// 从注册中心根据接口,找接口的实现类
String interFaceName = invocation.getInterfaceName();
Class impClass = null;
try {
impClass = Class.forName(invocation.getImpl());
} catch (ClassNotFoundException e) {
e.printStackTrace();
}
Method method;
Object result = null;
try {
method = impClass.getMethod(invocation.getMethodName(),invocation.getParamTypes());
//这块考虑实现类,是不是应该在 spring 里面拿
result = method.invoke(impClass.newInstance(),invocation.getParams());
} catch (Exception e) {
e.printStackTrace();
}
RpcResponse rpcResponse = new RpcResponse();
rpcResponse.setResponseId(invocation.getRequestId());
rpcResponse.setData(result);
ctx.writeAndFlush(rpcResponse).addListener(new ChannelFutureListener() {
public void operationComplete(ChannelFuture channelFuture) throws Exception {
System.out.println("RPC Server Send message-id respone:" + invocation.getRequestId());
}
});
}
}
再来看客户端,客户端有两种实现,一种是不能复用 handler(可以立即为 connection)的模式,这种模式并发不太高,另一种是能够复用 handler 的 handlerPool 模式。
不能复用的模式。
public class NettyClient {
private static NettyClient INSTANCE = new NettyClient();
private final static int parallel = Runtime.getRuntime().availableProcessors() * 2;
private NettyClient(){};
public static NettyClient getInstance(){
return INSTANCE;
}
private SerializeType serializeType = SerializeType.queryByType(Configuration.getInstance().getSerialize());
public void start(String host,Integer port){
Bootstrap bootstrap = new Bootstrap();
EventLoopGroup group = new NioEventLoopGroup(parallel);
try{
bootstrap.group(group)
.channel(NioSocketChannel.class)
.handler(new ChannelInitializer(){
@Override
protected void initChannel(SocketChannel arg0) throws Exception {
ChannelPipeline pipeline = arg0.pipeline();
//ObjectDecoder的基类半包解码器LengthFieldBasedFrameDecoder的报文格式保持兼容。因为底层的父类LengthFieldBasedFrameDecoder
//的初始化参数即为super(maxObjectSize, 0, 4, 0, 4);
// pipeline.addLast(new LengthFieldBasedFrameDecoder(Integer.MAX_VALUE, 0, 4, 0, 4));
//利用LengthFieldPrepender回填补充ObjectDecoder消息报文头
// pipeline.addLast(new LengthFieldPrepender(4));
// pipeline.addLast(new ObjectEncoder());
//考虑到并发性能,采用weakCachingConcurrentResolver缓存策略。一般情况使用:cacheDisabled即可
// pipeline.addLast(new ObjectDecoder(Integer.MAX_VALUE, ClassResolvers.weakCachingConcurrentResolver(this.getClass().getClassLoader())));
//注册Netty编码器
System.out.println("11111111:"+serializeType.getSerializeType());
pipeline.addLast(new NettyEncoderHandler(serializeType));
//注册Netty解码器
pipeline.addLast(new NettyDecoderHandler(RpcResponse.class, serializeType));
pipeline.addLast("handler", new NettyClientHandler());
}
});
ChannelFuture future = bootstrap.connect(host,port).sync();
}catch(Exception e){
group.shutdownGracefully();
}
}
}
在看可复用的模式,固定 handler 数量,目前框架中使用的是可复用模式,上面的不可复用的没用上,为了给大家理解,没有删除。
public class NettyChannelPoolFactory {
//初始化Netty Channel阻塞队列的长度,该值为可配置信息
private static final int channelConnectSize = 10;
//Key为服务提供者地址,value为Netty Channel阻塞队列
private static final Map> channelPoolMap = new ConcurrentHashMap();
private static NettyChannelPoolFactory INSTANCE = new NettyChannelPoolFactory();
private NettyChannelPoolFactory(){};
public static NettyChannelPoolFactory getInstance(){
return INSTANCE;
}
private List serviceMetaDataList = new ArrayList();
//根据配置文件里面需要调用的接口信息来初始化 channel
public void initNettyChannelPoolFactory(Map> providerMap){
//将服务提供者信息存入serviceMetaDataList列表
Collection> collectionServiceMetaDataList = providerMap.values();
for (List serviceMetaDataModels : collectionServiceMetaDataList) {
if (CollectionUtils.isEmpty(serviceMetaDataModels)) {
continue;
}
serviceMetaDataList.addAll(serviceMetaDataModels);
}
//获取服务提供者地址列表
Set set = new HashSet();
for (ServiceProvider serviceMetaData : serviceMetaDataList) {
String serviceIp = serviceMetaData.getIp();
int servicePort = serviceMetaData.getPort();
URL url = new URL(serviceIp,servicePort);
set.add(url);
}
for(URL url:set){
//为每个 ip端口 建立多个 channel,并且放入阻塞队列中
int channelSize = 0;
while(channelSize queue = channelPoolMap.get(url);
if(queue == null){
queue = new ArrayBlockingQueue(channelConnectSize);
channelPoolMap.put(url, queue);
}
queue.offer(channel);
}
}
}
public Channel registerChannel(URL url) {
final SerializeType serializeType = SerializeType.queryByType(Configuration.getInstance().getSerialize());
Bootstrap bootstrap = new Bootstrap();
EventLoopGroup group = new NioEventLoopGroup(10);
try{
bootstrap.group(group)
.channel(NioSocketChannel.class)
.handler(new ChannelInitializer(){
@Override
protected void initChannel(SocketChannel arg0) throws Exception {
ChannelPipeline pipeline = arg0.pipeline();
//ObjectDecoder的基类半包解码器LengthFieldBasedFrameDecoder的报文格式保持兼容。因为底层的父类LengthFieldBasedFrameDecoder
//的初始化参数即为super(maxObjectSize, 0, 4, 0, 4);
// pipeline.addLast(new LengthFieldBasedFrameDecoder(Integer.MAX_VALUE, 0, 4, 0, 4));
//利用LengthFieldPrepender回填补充ObjectDecoder消息报文头
// pipeline.addLast(new LengthFieldPrepender(4));
// pipeline.addLast(new ObjectEncoder());
//考虑到并发性能,采用weakCachingConcurrentResolver缓存策略。一般情况使用:cacheDisabled即可
// pipeline.addLast(new ObjectDecoder(Integer.MAX_VALUE, ClassResolvers.weakCachingConcurrentResolver(this.getClass().getClassLoader())));
pipeline.addLast(new NettyEncoderHandler(serializeType));
//注册Netty解码器
pipeline.addLast(new NettyDecoderHandler(RpcResponse.class, serializeType));
pipeline.addLast("handler", new NettyClientHandler());
}
});
ChannelFuture future = bootstrap.connect(url.getHost(),url.getPort()).sync();
Channel channel = future.channel();
//等待Netty服务端链路建立通知信号
final CountDownLatch connectedLatch = new CountDownLatch(1);
final List isSuccess = new ArrayList(1);
future.addListener(new ChannelFutureListener(){
@Override
public void operationComplete(ChannelFuture future)
throws Exception {
if(future.isSuccess()){
isSuccess.add(true);
}else{
isSuccess.add(false);
}
connectedLatch.countDown();
}
});
connectedLatch.await();
if(isSuccess.get(0)){
return channel;
}
}catch(Exception e){
group.shutdownGracefully();
e.printStackTrace();
}
return null;
}
//根据 url 获取阻塞队列
public ArrayBlockingQueue acqiure(URL url){
System.out.println(channelPoolMap.toString());
return channelPoolMap.get(url);
}
//channel 使用完毕后进行回收
public void release(ArrayBlockingQueue queue, Channel channel, URL url){
if(queue == null){
return;
}
//需要检查 channel 是否可用,如果不可用,重新注册一个放入阻塞队列中
if(channel == null || !channel.isActive() || !channel.isOpen()|| !channel.isWritable()){
if (channel != null) {
channel.deregister().syncUninterruptibly().awaitUninterruptibly();
channel.closeFuture().syncUninterruptibly().awaitUninterruptibly();
}
Channel c = null;
while(c == null){
c = registerChannel(url);
}
queue.offer(c);
return;
}
queue.offer(channel);
}
}
给出对应的 handler 实现,在 channelread0 里面读取 server 端返回的信息,因为 netty 是异步的,所以需要 MessageCallBack 来实现我们的同步调用。
public class NettyClientHandler extends SimpleChannelInboundHandler {
private ChannelHandlerContext context;
@Override
public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause)
throws Exception {
cause.printStackTrace();
ctx.close();
}
@Override
public void channelInactive(ChannelHandlerContext ctx) throws Exception {
System.out.println("停止时间是:"+new Date());
System.out.println("HeartBeatClientHandler channelInactive");
}
@Override
public void channelActive(ChannelHandlerContext ctx) throws Exception {
this.context = ctx;
System.out.println("激活时间是:"+ctx.channel().id());
}
@Override
protected void channelRead0(ChannelHandlerContext channelHandlerContext, RpcResponse rpcResponse) throws Exception {
// String res = (String)msg;
//RpcResponse rpcResponse = (RpcResponse)msg;
String responseId = rpcResponse.getResponseId();
MessageCallBack callBack = ResponseHolder.getInstance().mapCallBack.get(responseId);
if(callBack != null){
ResponseHolder.getInstance().mapCallBack.remove(responseId);
callBack.over(rpcResponse);
}
}
}
MessageCallBack 的实现。
public class MessageCallBack {
private RpcRequest rpcRequest;
private RpcResponse rpcResponse;
private Lock lock = new ReentrantLock();
private Condition finish = lock.newCondition();
public MessageCallBack(RpcRequest request) {
this.rpcRequest = request;
}
public Object start() throws InterruptedException {
try {
lock.lock();
//设定一下超时时间,rpc服务器太久没有相应的话,就默认返回空吧。
finish.await(10*1000, TimeUnit.MILLISECONDS);
if (this.rpcResponse != null) {
return this.rpcResponse.getData();
} else {
return null;
}
} finally {
lock.unlock();
}
}
public void over(RpcResponse reponse) {
try {
lock.lock();
this.rpcResponse = reponse;
finish.signal();
} finally {
lock.unlock();
}
}
}
既然是可插拔式框架,那么底层协议一定要是可选择的,所以我们定义一个顶层接口来支持我们选择协议。
start 方法是启动服务端,send 方法是客户端发送数据。
public interface Procotol {
void start(URL url);
Object send(URL url, RpcRequest invocation);
}
对应的三个协议的接口实现。
Netty 的实现
public class DubboProcotol implements Procotol {
@Override
public void start(URL url) {
NettyServer nettyServer = NettyServer.getInstance();
nettyServer.start(url.getHost(),url.getPort());
}
@Override
public Object send(URL url, RpcRequest invocation) {
ArrayBlockingQueue queue = NettyChannelPoolFactory.getInstance().acqiure(url);
Channel channel = null;
try {
channel = queue.poll(invocation.getTimeout(), TimeUnit.MILLISECONDS);
if(channel == null || !channel.isActive() || !channel.isOpen()|| !channel.isWritable()){
channel = queue.poll(invocation.getTimeout(), TimeUnit.MILLISECONDS);
if(channel == null){
channel = NettyChannelPoolFactory.getInstance().registerChannel(url);
}
}
//将本次调用的信息写入Netty通道,发起异步调用
ChannelFuture channelFuture = channel.writeAndFlush(invocation);
channelFuture.syncUninterruptibly();
MessageCallBack callback = new MessageCallBack(invocation);
ResponseHolder.getInstance().mapCallBack.put(invocation.getRequestId(), callback);
try {
return callback.start();
} catch (InterruptedException e) {
e.printStackTrace();
}
return null;
} catch (InterruptedException e1) {
e1.printStackTrace();
}finally{
System.out.println("release:"+channel.id());
NettyChannelPoolFactory.getInstance().release(queue, channel, url);
}
return null;
}
}
http 的实现
public class HttpProcotol implements Procotol {
@Override
public void start(URL url) {
HttpServer httpServer = HttpServer.getInstance();
httpServer.start(url.getHost(),url.getPort());
}
@Override
public Object send(URL url, RpcRequest invocation) {
HttpClient httpClient = HttpClient.getInstance();
return httpClient.post(url.getHost(),url.getPort(),invocation);
}
}
Socket 的实现
public class SocketProcotol implements Procotol {
@Override
public void start(URL url) {
SocketServer socketServer = SocketServer.getInstance();
socketServer.publiser(url.getPort());
}
@Override
public Object send(URL url, RpcRequest invocation) {
SocketClient socketClient = SocketClient.getInstance();
return socketClient.sendRequest(url.getHost(),url.getPort(),invocation);
}
}
这样一个可选择协议的模型就实现了,我们可已通过这个模块选择协议,并且与服务端通信。
文章标题:带你手写基于 Spring 的可插拔式 RPC 框架(三)通信协议模块
文章链接:http://soscw.com/essay/30425.html