python:利用celery分布任务
2020-12-13 05:39
标签:并且 nts web开发框架 col add 问题 可用性 获得 操作 Celery是一个功能完备即插即用的任务队列。它使得我们不需要考虑复杂的问题,使用非常简单。celery看起来似乎很庞大。celery适用异步处理问题,当发送邮件、或者文件上传, 图像处理等等一些比较耗时的操作,我们可将其异步执行,这样用户不需要等待很久,提高用户体验。 celery的特点是: 简单,易于使用和维护,有丰富的文档。 高效,单个celery进程每分钟可以处理数百万个任务。 灵活,celery中几乎每个部分都可以自定义扩展。 celery非常易于集成到一些web开发框架中。 任务队列是一种跨线程、跨机器工作的一种机制。 任务队列中包含称作任务的工作单元。有专门的工作进程持续不断的监视任务队列,并从中获得新的任务并处理。 celery通过消息进行通信,通常使用一个叫Broker(中间人)来协client(任务的发出者)和worker(任务的处理者). clients发出消息到队列中,broker将队列中的信息派发给worker来处理。 一个celery系统可以包含很多的worker和broker,可增强横向扩展性和高可用性能。 安装celery celery支持多种消息中介 其中最完备的是RabbitMQ和Redis。 usage: celery 可选参数 Global Options: 具体实现简单的任务,我这里使用的rabbitmq作为borker 第二个脚本 配置celery 通过APP配置celery 转有配置文件 tasks.py python:利用celery分布任务 标签:并且 nts web开发框架 col add 问题 可用性 获得 操作 原文地址:https://www.cnblogs.com/thotf/p/11136856.htmlpip install -U Celery
pip install -U flower #安装任务监控工具
-A APP, --app APP
-b BROKER, --broker BROKER
--result-backend RESULT_BACKEND
--loader LOADER
--config CONFIG
--workdir WORKDIR
--no-color, -C
--quiet, -q#addtask.py
from celery import Celery
app = Celery("addtask",borker="amqp://admin:admin@localhost//") #使用rabbitmq
@app.task
def add(x,y):
return x + y#run.py
import addtask
if __name__ == "__main__":
result = addtask.add.delay(5,5)
#delay是apply_async()方法的快件方式让我们更好的执行任务。
#my_task.apply_async((2, 2), queue=‘my_queue‘, countdown=10) 任务my_task将会被发送到my_queue队列中,并且在发送10秒之后执行
print(result) #result.result 获取结果
运行celery服务
celery -A addtask worker --loglevel=info
使用redis
#tasks.py
from celery import Celery
# 我们这里案例使用redis作为broker
app = Celery(‘demo‘, broker=‘redis://:332572@127.0.0.1/1‘)
# 创建任务函数
@app.task
def my_task():
print("任务函数正在执行....")
celery -A tasks worker --loglevel=info
#run.py
import tasks
from tasks import my_task
my_task.delay()
使用Redis作为存储结果的方案,任务结果存储配置我们通过Celery的backend参数来设定。我们将tasks模块修改如下:
from celery import Celery
# 我们这里案例使用redis作为broker
app = Celery(‘demo‘,
backend=‘redis://:332572@127.0.0.1:6379/2‘,
broker=‘redis://:332572@127.0.0.1:6379/1‘)
# 创建任务函数
@app.task
def my_task(a, b):
print("任务函数正在执行....")
return a + b
from celery import Celery
app = Celery(‘demo‘)
# 增加配置
app.conf.update(
result_backend=‘redis://:332572@127.0.0.1:6379/2‘,
broker_url=‘redis://:332572@127.0.0.1:6379/1‘,
)
下面我们在tasks.py模块 同级目录下创建配置模块celeryconfig.py:
result_backend = ‘redis://:332572@127.0.0.1:6379/2‘
broker_url = ‘redis://:332572@127.0.0.1:6379/1‘
from celery import Celery
import celeryconfig
# 我们这里案例使用redis作为broker
app = Celery(‘demo‘)
# 从单独的配置模块中加载配置
app.config_from_object(‘celeryconfig‘)