R语言与概率统计(三) 多元统计分析(下)广义线性回归
2020-12-13 06:03
标签:packages step 解释 isp src ring install mil nts 广义线性回归
可见拟合的效果不好 R语言与概率统计(三) 多元统计分析(下)广义线性回归 标签:packages step 解释 isp src ring install mil nts 原文地址:https://www.cnblogs.com/caiyishuai/p/11164543.html> life glm.sol summary(glm.sol)
Call:
glm(formula = Y ~ X1 + X2 + X3, family = binomial, data = life)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.6960 -0.5842 -0.2828 0.7436 1.9292
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.696538 0.658635 -2.576 0.010000 **
X1 0.002326 0.005683 0.409 0.682308
X2 -0.792177 0.487262 -1.626 0.103998
X3 2.830373 0.793406 3.567 0.000361 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 67.301 on 49 degrees of freedom
Residual deviance: 46.567 on 46 degrees of freedom
AIC: 54.567
Number of Fisher Scoring iterations: 5
> pre p
> pre p
> step(glm.sol)
Start: AIC=54.57
Y ~ X1 + X2 + X3
Df Deviance AIC
- X1 1 46.718 52.718
> glm.new summary(glm.new)
Call:
glm(formula = Y ~ X2 + X3, family = binomial, data = life)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.6849 -0.5949 -0.3033 0.7442 1.9073
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.6419 0.6381 -2.573 0.010082 *
X2 -0.7070 0.4282 -1.651 0.098750 .
X3 2.7844 0.7797 3.571 0.000355 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 67.301 on 49 degrees of freedom
Residual deviance: 46.718 on 47 degrees of freedom
AIC: 52.718
Number of Fisher Scoring iterations: 5
>
> pre p
> pre p
#####再来看一个类似的问题
install.packages(‘AER‘)
data(Affairs,package=‘AER‘)#婚外情数据,包括9个变量,婚外斯通频率,性别,婚龄等。
summary(Affairs)
table(Affairs$affairs)
#我们感兴趣的是是否有过婚外情所以做如下处理
Affairs$ynaffair[Affairs$affairs>0]
Affairs$ynaffair[Affairs$affairs==0]0
Affairs$ynaffair‘NO‘,‘YES‘))
table(Affairs$ynaffair)
#接下来做逻辑回归
fit.full=glm(ynaffair~.-affairs,data=Affairs,family=binomial())
summary(fit.full)
#除掉较大p值所对应的变量,如性别,是否有孩子、学历和职业在做一次分析
fit.reduced=glm(ynaffair~age+yearsmarried+religiousness+rating,data=Affairs,family=binomial())
summary(fit.reduced)
AIC(fit.full,fit.reduced)#模型比较
#系数解释
exp(coef(fit.reduced))