粒子群算法(PSO)

2020-12-13 06:18

阅读:457

标签:结果   指定   har   color   and   初始化   应用   发送   pen   

这几天看书的时候看到一个算法,叫粒子群算法,这个算法挺有意思的,下面说说我个人的理解:

  粒子群算法(PSO)是一种进化算法,是一种求得近似最优解的算法,这种算法的时间复杂度可能会达到O(n!),得到的结果不一定是最优解,往往已经很接近最优解了。最早是Kenny 和 Eberhart于1995年提出的,算法的参数配置少,易于应用,理解起来也很简单。实现步骤如下:

  (1)初始化所有的粒子,粒子的位置随机生成,计算每个粒子当前适应度,并将此设置为当前粒子的个体最优解(记为pBest);

  (2)所有粒子将自己的个体最优值发给管理者Master,管理者Master接到所有粒子的信息后,筛选出全局最优解(记为gBest);

  (3)Master将gBest通知所有粒子,所有粒子知道了全局最优解的位置;

  (4)所有粒子根据自己的个体最优解和全局最优解,更新自己的速度,有了速度以后更新自己的位置。

      vk+1 = c0 × rand() × vk + c1 × rand() × (pBestk - xk) + c2 × rand() × (gBestk - xk

       rand() 函数会产生一个(0,1)的随机数。 c0 = 1 c1 = 2 c2 = 2 ,k表示进化的代数。vk表示当前速度pBest和 gBest分别表示个体最优解和全局最优解。当然每个维度上的速度分量可以限定一个最大值。

  (5)如果粒子产生了新的个体最优解,则发送给Master,再循环步骤(2)。

可以看出每个粒子的计算有很大的随机性,但是我们可以启用大量的粒子进行计算,因此在统计学意义上是稳定的。

下面出到这个算法的题:

  假设有400万元,要求4年内用完,如果第一年使用x万元,则可以得到的收益是√x万元(收益不再使用),当年不用的资金存入银行,年利率10%,尝试指定资金使用计划,使得4年收益之和最大。

  很明显,不同方案有不同结果,差异也很大,例如第一年就把400万投资,那么收益就是√400 = 20万;如果前三年不用,存入银行,第四年再把本金和利息全部拿出来,总收益是√400×1.13 = 23.07 万元,优于第一个方案。

  如果一个线程一个方案的话势必产生大量的线程,Akka框架的Actor模型正好适合这个,因为每个Actor可以共享同一个线程,这样不用产生大量的线程并且保证了大量的粒子。我们可以使用Actor来模拟整个粒子计算的场景。

  首先,新建pBest和gBest消息类型,用于多个Actor之间传递个体最优解和全局最优解。

技术图片技术图片
 1 /**
 2 * 全局最优解
 3 */
 4 public final class GBestMsg{
 5   final PsoValue value;
 6   public GBestMsg(PsoValue v){
 7      value = v;
 8   }
 9   public PsoValue getValue(){
10      return value;
11   }
12 }
13 /**
14 * 个体最优解
15 */
16 public final class PBestMsg{
17   final PsoValue value;
18   public PBestMsg(PsoValue v){
19      value = v;
20   }
21   public PsoValue getValue(){
22      return value;
23   }
24   public String toString(){
25      return value.toString();
26   }
27 }
View Code

 

粒子群算法(PSO)

标签:结果   指定   har   color   and   初始化   应用   发送   pen   

原文地址:https://www.cnblogs.com/wangyongwen/p/11173636.html


评论


亲,登录后才可以留言!