吴裕雄--天生自然 R语言开发学习:基本图形
2020-12-13 06:20
标签:basic alt iter rap rom led parallel order detach 吴裕雄--天生自然 R语言开发学习:基本图形 标签:basic alt iter rap rom led parallel order detach 原文地址:https://www.cnblogs.com/tszr/p/11175359.html#---------------------------------------------------------------#
# R in Action (2nd ed): Chapter 6 #
# Basic graphs #
# requires packages vcd, plotrix, sm, vioplot to be installed #
# install.packages(c("vcd", "plotrix", "sm", "vioplot")) #
#---------------------------------------------------------------#
par(ask=TRUE)
opar # save original parameter settings
library(vcd)
counts table(Arthritis$Improved)
counts
# Listing 6.1 - Simple bar plot
# vertical barplot
barplot(counts,
main="Simple Bar Plot",
xlab="Improvement", ylab="Frequency")
# horizontal bar plot
barplot(counts,
main="Horizontal Bar Plot",
xlab="Frequency", ylab="Improvement",
horiz=TRUE)
# obtain 2-way frequency table
library(vcd)
counts table(Arthritis$Improved, Arthritis$Treatment)
counts
# Listing 6.2 - Stacked and grouped bar plots
# stacked barplot
barplot(counts,
main="Stacked Bar Plot",
xlab="Treatment", ylab="Frequency",
col=c("red", "yellow","green"),
legend=rownames(counts))
# grouped barplot
barplot(counts,
main="Grouped Bar Plot",
xlab="Treatment", ylab="Frequency",
col=c("red", "yellow", "green"),
legend=rownames(counts), beside=TRUE)
# Listing 6.3 - Bar plot for sorted mean values
states data.frame(state.region, state.x77)
means mean)
means
means means[order(means$x),]
means
barplot(means$x, names.arg=means$Group.1)
title("Mean Illiteracy Rate")
# Listing 6.4 - Fitting labels in bar plots
par(las=2) # set label text perpendicular to the axis
par(mar=c(5,8,4,2)) # increase the y-axis margin
counts # get the data for the bars
# produce the graph
barplot(counts,
main="Treatment Outcome", horiz=TRUE, cex.names=0.8,
names.arg=c("No Improvement", "Some Improvement", "Marked Improvement")
)
par(opar)
# Spinograms
library(vcd)
attach(Arthritis)
counts table(Treatment,Improved)
spine(counts, main="Spinogram Example")
detach(Arthritis)
# Listing 6.5 - Pie charts
par(mfrow=c(2,2))
slices )
lbls "US", "UK", "Australia", "Germany", "France")
pie(slices, labels = lbls,
main="Simple Pie Chart")
pct )
lbls paste(lbls, pct)
lbls "%",sep="")
pie(slices,labels = lbls, col=rainbow(length(lbls)),
main="Pie Chart with Percentages")
library(plotrix)
pie3D(slices, labels=lbls,explode=0.1,
main="3D Pie Chart ")
mytable table(state.region)
lbls "\n", mytable, sep="")
pie(mytable, labels = lbls,
main="Pie Chart from a dataframe\n (with sample sizes)")
par(opar)
# Fan plots
library(plotrix)
slices )
lbls "US", "UK", "Australia", "Germany", "France")
fan.plot(slices, labels = lbls, main="Fan Plot")
# Listing 6.6 - Histograms
# simple histogram 1
hist(mtcars$mpg)
# colored histogram with specified number of bins
hist(mtcars$mpg,
breaks=12,
col="red",
xlab="Miles Per Gallon",
main="Colored histogram with 12 bins")
# colored histogram with rug plot, frame, and specified number of bins
hist(mtcars$mpg,
freq=FALSE,
breaks=12,
col="red",
xlab="Miles Per Gallon",
main="Histogram, rug plot, density curve")
rug(jitter(mtcars$mpg))
lines(density(mtcars$mpg), col="blue", lwd=2)
# histogram with superimposed normal curve (Thanks to Peter Dalgaard)
x mtcars$mpg
hhist(x,
breaks=12,
col="red",
xlab="Miles Per Gallon",
main="Histogram with normal curve and box")
xfit)
yfitsd(x))
yfit length(x)
lines(xfit, yfit, col="blue", lwd=2)
box()
# Listing 6.7 - Kernel density plot
d # returns the density data
plot(d) # plots the results
d density(mtcars$mpg)
plot(d, main="Kernel Density of Miles Per Gallon")
polygon(d, col="red", border="blue")
rug(mtcars$mpg, col="brown")
# Listing 6.8 - Comparing kernel density plots
par(lwd=2)
library(sm)
attach(mtcars)
# create value labels
cyl.f ),
labels = c("4 cylinder", "6 cylinder", "8 cylinder"))
# plot densities
sm.density.compare(mpg, cyl, xlab="Miles Per Gallon")
title(main="MPG Distribution by Car Cylinders")
# add legend via mouse click
colfilllength(levels(cyl.f))))
cat("Use mouse to place legend...","\n\n")
legend(locator(1), levels(cyl.f), fill=colfill)
detach(mtcars)
par(lwd=1)
# parallel box plots
boxplot(mpg~cyl,data=mtcars,
main="Car Milage Data",
xlab="Number of Cylinders",
ylab="Miles Per Gallon")
# notched box plots
boxplot(mpg~cyl,data=mtcars,
notch=TRUE,
varwidth=TRUE,
col="red",
main="Car Mileage Data",
xlab="Number of Cylinders",
ylab="Miles Per Gallon")
# Listing 6.9 - Box plots for two crossed factors
# create a factor for number of cylinders
mtcars$cyl.f factor(mtcars$cyl,
levels=c(4,6,8),
labels=c("4","6","8"))
# create a factor for transmission type
mtcars$am.f factor(mtcars$am,
levels=c(0,1),
labels=c("auto","standard"))
# generate boxplot
boxplot(mpg ~ am.f *cyl.f,
data=mtcars,
varwidth=TRUE,
col=c("gold", "darkgreen"),
main="MPG Distribution by Auto Type",
xlab="Auto Type")
# Listing 6.10 - Violin plots
library(vioplot)
x1 ]
x2 ]
x3 ]
vioplot(x1, x2, x3,
names=c("4 cyl", "6 cyl", "8 cyl"),
col="gold")
title("Violin Plots of Miles Per Gallon")
# dot chart
dotchart(mtcars$mpg,labels=row.names(mtcars),cex=.7,
main="Gas Mileage for Car Models",
xlab="Miles Per Gallon")
# Listing 6.11 - Dot plot grouped, sorted, and colored
x mtcars[order(mtcars$mpg),]
x$cyl factor(x$cyl)
x$color[x$cyl==4] "red"
x$color[x$cyl==6] "blue"
x$color[x$cyl==8] "darkgreen"
dotchart(x$mpg,
labels = row.names(x),
cex=.7,
pch=19,
groups = x$cyl,
gcolor = "black",
color = x$color,
main = "Gas Mileage for Car Models\ngrouped by cylinder",
xlab = "Miles Per Gallon")