Java-Class-C:java.util.ArrayList

2020-12-13 03:56

阅读:387

标签:random   storage   ports   already   ade   eal   server   otf   without   

ylbtech-Java-Class-C:java.util.ArrayList

 

1.返回顶部
1.1、

import java.util.ArrayList;
import java.util.List;

1.2、

List newList = new ArrayList();
newList.add(3);

2、
2.返回顶部
 
3.返回顶部
 
4.返回顶部
1、
/*
 * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
 * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 */

package java.util;

import java.util.function.Consumer;
import java.util.function.Predicate;
import java.util.function.UnaryOperator;
import sun.misc.SharedSecrets;

/**
 * Resizable-array implementation of the List interface.  Implements
 * all optional list operations, and permits all elements, including
 * null.  In addition to implementing the List interface,
 * this class provides methods to manipulate the size of the array that is
 * used internally to store the list.  (This class is roughly equivalent to
 * Vector, except that it is unsynchronized.)
 *
 * 

The size, isEmpty, get, set, * iterator, and listIterator operations run in constant * time. The add operation runs in amortized constant time, * that is, adding n elements requires O(n) time. All of the other operations * run in linear time (roughly speaking). The constant factor is low compared * to that for the LinkedList implementation. * *

Each ArrayList instance has a capacity. The capacity is * the size of the array used to store the elements in the list. It is always * at least as large as the list size. As elements are added to an ArrayList, * its capacity grows automatically. The details of the growth policy are not * specified beyond the fact that adding an element has constant amortized * time cost. * *

An application can increase the capacity of an ArrayList instance * before adding a large number of elements using the ensureCapacity * operation. This may reduce the amount of incremental reallocation. * *

Note that this implementation is not synchronized. * If multiple threads access an ArrayList instance concurrently, * and at least one of the threads modifies the list structurally, it * must be synchronized externally. (A structural modification is * any operation that adds or deletes one or more elements, or explicitly * resizes the backing array; merely setting the value of an element is not * a structural modification.) This is typically accomplished by * synchronizing on some object that naturally encapsulates the list. * * If no such object exists, the list should be "wrapped" using the * {

@link Collections#synchronizedList Collections.synchronizedList} * method. This is best done at creation time, to prevent accidental * unsynchronized access to the list:
 *   List list = Collections.synchronizedList(new ArrayList(...));
* *

* The iterators returned by this class‘s {

@link #iterator() iterator} and * {@link #listIterator(int) listIterator} methods are fail-fast: * if the list is structurally modified at any time after the iterator is * created, in any way except through the iterator‘s own * {@link ListIterator#remove() remove} or * {@link ListIterator#add(Object) add} methods, the iterator will throw a * {@link ConcurrentModificationException}. Thus, in the face of * concurrent modification, the iterator fails quickly and cleanly, rather * than risking arbitrary, non-deterministic behavior at an undetermined * time in the future. * *

Note that the fail-fast behavior of an iterator cannot be guaranteed * as it is, generally speaking, impossible to make any hard guarantees in the * presence of unsynchronized concurrent modification. Fail-fast iterators * throw {

@code ConcurrentModificationException} on a best-effort basis. * Therefore, it would be wrong to write a program that depended on this * exception for its correctness: the fail-fast behavior of iterators * should be used only to detect bugs. * *

This class is a member of the * * Java Collections Framework. * *

@author Josh Bloch * @author Neal Gafter * @see Collection * @see List * @see LinkedList * @see Vector * @since 1.2 */ public class ArrayListextends AbstractListimplements List, RandomAccess, Cloneable, java.io.Serializable { private static final long serialVersionUID = 8683452581122892189L; /** * Default initial capacity. */ private static final int DEFAULT_CAPACITY = 10; /** * Shared empty array instance used for empty instances. */ private static final Object[] EMPTY_ELEMENTDATA = {}; /** * Shared empty array instance used for default sized empty instances. We * distinguish this from EMPTY_ELEMENTDATA to know how much to inflate when * first element is added. */ private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {}; /** * The array buffer into which the elements of the ArrayList are stored. * The capacity of the ArrayList is the length of this array buffer. Any * empty ArrayList with elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA * will be expanded to DEFAULT_CAPACITY when the first element is added. */ transient Object[] elementData; // non-private to simplify nested class access /** * The size of the ArrayList (the number of elements it contains). * * @serial */ private int size; /** * Constructs an empty list with the specified initial capacity. * * @param initialCapacity the initial capacity of the list * @throws IllegalArgumentException if the specified initial capacity * is negative */ public ArrayList(int initialCapacity) { if (initialCapacity > 0) { this.elementData = new Object[initialCapacity]; } else if (initialCapacity == 0) { this.elementData = EMPTY_ELEMENTDATA; } else { throw new IllegalArgumentException("Illegal Capacity: "+ initialCapacity); } } /** * Constructs an empty list with an initial capacity of ten. */ public ArrayList() { this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA; } /** * Constructs a list containing the elements of the specified * collection, in the order they are returned by the collection‘s * iterator. * * @param c the collection whose elements are to be placed into this list * @throws NullPointerException if the specified collection is null */ public ArrayList(Collection extends E> c) { elementData = c.toArray(); if ((size = elementData.length) != 0) { // c.toArray might (incorrectly) not return Object[] (see 6260652) if (elementData.getClass() != Object[].class) elementData = Arrays.copyOf(elementData, size, Object[].class); } else { // replace with empty array. this.elementData = EMPTY_ELEMENTDATA; } } /** * Trims the capacity of this ArrayList instance to be the * list‘s current size. An application can use this operation to minimize * the storage of an ArrayList instance. */ public void trimToSize() { modCount++; if (size elementData.length) { elementData = (size == 0) ? EMPTY_ELEMENTDATA : Arrays.copyOf(elementData, size); } } /** * Increases the capacity of this ArrayList instance, if * necessary, to ensure that it can hold at least the number of elements * specified by the minimum capacity argument. * * @param minCapacity the desired minimum capacity */ public void ensureCapacity(int minCapacity) { int minExpand = (elementData != DEFAULTCAPACITY_EMPTY_ELEMENTDATA) // any size if not default element table ? 0 // larger than default for default empty table. It‘s already // supposed to be at default size. : DEFAULT_CAPACITY; if (minCapacity > minExpand) { ensureExplicitCapacity(minCapacity); } } private static int calculateCapacity(Object[] elementData, int minCapacity) { if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) { return Math.max(DEFAULT_CAPACITY, minCapacity); } return minCapacity; } private void ensureCapacityInternal(int minCapacity) { ensureExplicitCapacity(calculateCapacity(elementData, minCapacity)); } private void ensureExplicitCapacity(int minCapacity) { modCount++; // overflow-conscious code if (minCapacity - elementData.length > 0) grow(minCapacity); } /** * The maximum size of array to allocate. * Some VMs reserve some header words in an array. * Attempts to allocate larger arrays may result in * OutOfMemoryError: Requested array size exceeds VM limit */ private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8; /** * Increases the capacity to ensure that it can hold at least the * number of elements specified by the minimum capacity argument. * * @param minCapacity the desired minimum capacity */ private void grow(int minCapacity) { // overflow-conscious code int oldCapacity = elementData.length; int newCapacity = oldCapacity + (oldCapacity >> 1); if (newCapacity - minCapacity ) newCapacity = minCapacity; if (newCapacity - MAX_ARRAY_SIZE > 0) newCapacity = hugeCapacity(minCapacity); // minCapacity is usually close to size, so this is a win: elementData = Arrays.copyOf(elementData, newCapacity); } private static int hugeCapacity(int minCapacity) { if (minCapacity // overflow throw new OutOfMemoryError(); return (minCapacity > MAX_ARRAY_SIZE) ? Integer.MAX_VALUE : MAX_ARRAY_SIZE; } /** * Returns the number of elements in this list. * * @return the number of elements in this list */ public int size() { return size; } /** * Returns true if this list contains no elements. * * @return true if this list contains no elements */ public boolean isEmpty() { return size == 0; } /** * Returns true if this list contains the specified element. * More formally, returns true if and only if this list contains * at least one element e such that * (o==null ? e==null : o.equals(e)). * * @param o element whose presence in this list is to be tested * @return true if this list contains the specified element */ public boolean contains(Object o) { return indexOf(o) >= 0; } /** * Returns the index of the first occurrence of the specified element * in this list, or -1 if this list does not contain the element. * More formally, returns the lowest index i such that * (o==null ? get(i)==null : o.equals(get(i))), * or -1 if there is no such index. */ public int indexOf(Object o) { if (o == null) { for (int i = 0; i ) if (elementData[i]==null) return i; } else { for (int i = 0; i ) if (o.equals(elementData[i])) return i; } return -1; } /** * Returns the index of the last occurrence of the specified element * in this list, or -1 if this list does not contain the element. * More formally, returns the highest index i such that * (o==null ? get(i)==null : o.equals(get(i))), * or -1 if there is no such index. */ public int lastIndexOf(Object o) { if (o == null) { for (int i = size-1; i >= 0; i--) if (elementData[i]==null) return i; } else { for (int i = size-1; i >= 0; i--) if (o.equals(elementData[i])) return i; } return -1; } /** * Returns a shallow copy of this ArrayList instance. (The * elements themselves are not copied.) * * @return a clone of this ArrayList instance */ public Object clone() { try { ArrayList> v = (ArrayList>) super.clone(); v.elementData = Arrays.copyOf(elementData, size); v.modCount = 0; return v; } catch (CloneNotSupportedException e) { // this shouldn‘t happen, since we are Cloneable throw new InternalError(e); } } /** * Returns an array containing all of the elements in this list * in proper sequence (from first to last element). * *

The returned array will be "safe" in that no references to it are * maintained by this list. (In other words, this method must allocate * a new array). The caller is thus free to modify the returned array. * *

This method acts as bridge between array-based and collection-based * APIs. * *

@return an array containing all of the elements in this list in * proper sequence */ public Object[] toArray() { return Arrays.copyOf(elementData, size); } /** * Returns an array containing all of the elements in this list in proper * sequence (from first to last element); the runtime type of the returned * array is that of the specified array. If the list fits in the * specified array, it is returned therein. Otherwise, a new array is * allocated with the runtime type of the specified array and the size of * this list. * *

If the list fits in the specified array with room to spare * (i.e., the array has more elements than the list), the element in * the array immediately following the end of the collection is set to * null. (This is useful in determining the length of the * list only if the caller knows that the list does not contain * any null elements.) * *

@param a the array into which the elements of the list are to * be stored, if it is big enough; otherwise, a new array of the * same runtime type is allocated for this purpose. * @return an array containing the elements of the list * @throws ArrayStoreException if the runtime type of the specified array * is not a supertype of the runtime type of every element in * this list * @throws NullPointerException if the specified array is null */ @SuppressWarnings("unchecked") public T[] toArray(T[] a) { if (a.length size) // Make a new array of a‘s runtime type, but my contents: return (T[]) Arrays.copyOf(elementData, size, a.getClass()); System.arraycopy(elementData, 0, a, 0, size); if (a.length > size) a[size] = null; return a; } // Positional Access Operations @SuppressWarnings("unchecked") E elementData(int index) { return (E) elementData[index]; } /** * Returns the element at the specified position in this list. * * @param index index of the element to return * @return the element at the specified position in this list * @throws IndexOutOfBoundsException {@inheritDoc} */ public E get(int index) { rangeCheck(index); return elementData(index); } /** * Replaces the element at the specified position in this list with * the specified element. * * @param index index of the element to replace * @param element element to be stored at the specified position * @return the element previously at the specified position * @throws IndexOutOfBoundsException {@inheritDoc} */ public E set(int index, E element) { rangeCheck(index); E oldValue = elementData(index); elementData[index] = element; return oldValue; } /** * Appends the specified element to the end of this list. * * @param e element to be appended to this list * @return true (as specified by {@link Collection#add}) */ public boolean add(E e) { ensureCapacityInternal(size + 1); // Increments modCount!! elementData[size++] = e; return true; } /** * Inserts the specified element at the specified position in this * list. Shifts the element currently at that position (if any) and * any subsequent elements to the right (adds one to their indices). * * @param index index at which the specified element is to be inserted * @param element element to be inserted * @throws IndexOutOfBoundsException {@inheritDoc} */ public void add(int index, E element) { rangeCheckForAdd(index); ensureCapacityInternal(size + 1); // Increments modCount!! System.arraycopy(elementData, index, elementData, index + 1, size - index); elementData[index] = element; size++; } /** * Removes the element at the specified position in this list. * Shifts any subsequent elements to the left (subtracts one from their * indices). * * @param index the index of the element to be removed * @return the element that was removed from the list * @throws IndexOutOfBoundsException {@inheritDoc} */ public E remove(int index) { rangeCheck(index); modCount++; E oldValue = elementData(index); int numMoved = size - index - 1; if (numMoved > 0) System.arraycopy(elementData, index+1, elementData, index, numMoved); elementData[--size] = null; // clear to let GC do its work return oldValue; } /** * Removes the first occurrence of the specified element from this list, * if it is present. If the list does not contain the element, it is * unchanged. More formally, removes the element with the lowest index * i such that * (o==null ? get(i)==null : o.equals(get(i))) * (if such an element exists). Returns true if this list * contained the specified element (or equivalently, if this list * changed as a result of the call). * * @param o element to be removed from this list, if present * @return true if this list contained the specified element */ public boolean remove(Object o) { if (o == null) { for (int index = 0; index ) if (elementData[index] == null) { fastRemove(index); return true; } } else { for (int index = 0; index ) if (o.equals(elementData[index])) { fastRemove(index); return true; } } return false; } /* * Private remove method that skips bounds checking and does not * return the value removed. */ private void fastRemove(int index) { modCount++; int numMoved = size - index - 1; if (numMoved > 0) System.arraycopy(elementData, index+1, elementData, index, numMoved); elementData[--size] = null; // clear to let GC do its work } /** * Removes all of the elements from this list. The list will * be empty after this call returns. */ public void clear() { modCount++; // clear to let GC do its work for (int i = 0; i ) elementData[i] = null; size = 0; } /** * Appends all of the elements in the specified collection to the end of * this list, in the order that they are returned by the * specified collection‘s Iterator. The behavior of this operation is * undefined if the specified collection is modified while the operation * is in progress. (This implies that the behavior of this call is * undefined if the specified collection is this list, and this * list is nonempty.) * * @param c collection containing elements to be added to this list * @return true if this list changed as a result of the call * @throws NullPointerException if the specified collection is null */ public boolean addAll(Collection extends E> c) { Object[] a = c.toArray(); int numNew = a.length; ensureCapacityInternal(size + numNew); // Increments modCount System.arraycopy(a, 0, elementData, size, numNew); size += numNew; return numNew != 0; } /** * Inserts all of the elements in the specified collection into this * list, starting at the specified position. Shifts the element * currently at that position (if any) and any subsequent elements to * the right (increases their indices). The new elements will appear * in the list in the order that they are returned by the * specified collection‘s iterator. * * @param index index at which to insert the first element from the * specified collection * @param c collection containing elements to be added to this list * @return true if this list changed as a result of the call * @throws IndexOutOfBoundsException {@inheritDoc} * @throws NullPointerException if the specified collection is null */ public boolean addAll(int index, Collection extends E> c) { rangeCheckForAdd(index); Object[] a = c.toArray(); int numNew = a.length; ensureCapacityInternal(size + numNew); // Increments modCount int numMoved = size - index; if (numMoved > 0) System.arraycopy(elementData, index, elementData, index + numNew, numMoved); System.arraycopy(a, 0, elementData, index, numNew); size += numNew; return numNew != 0; } /** * Removes from this list all of the elements whose index is between * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive. * Shifts any succeeding elements to the left (reduces their index). * This call shortens the list by {@code (toIndex - fromIndex)} elements. * (If {@code toIndex==fromIndex}, this operation has no effect.) * * @throws IndexOutOfBoundsException if {@code fromIndex} or * {@code toIndex} is out of range * ({@code fromIndex = size() || * toIndex > size() || * toIndex */ protected void removeRange(int fromIndex, int toIndex) { modCount++; int numMoved = size - toIndex; System.arraycopy(elementData, toIndex, elementData, fromIndex, numMoved); // clear to let GC do its work int newSize = size - (toIndex-fromIndex); for (int i = newSize; i ) { elementData[i] = null; } size = newSize; } /** * Checks if the given index is in range. If not, throws an appropriate * runtime exception. This method does *not* check if the index is * negative: It is always used immediately prior to an array access, * which throws an ArrayIndexOutOfBoundsException if index is negative. */ private void rangeCheck(int index) { if (index >= size) throw new IndexOutOfBoundsException(outOfBoundsMsg(index)); } /** * A version of rangeCheck used by add and addAll. */ private void rangeCheckForAdd(int index) { if (index > size || index ) throw new IndexOutOfBoundsException(outOfBoundsMsg(index)); } /** * Constructs an IndexOutOfBoundsException detail message. * Of the many possible refactorings of the error handling code, * this "outlining" performs best with both server and client VMs. */ private String outOfBoundsMsg(int index) { return "Index: "+index+", Size: "+size; } /** * Removes from this list all of its elements that are contained in the * specified collection. * * @param c collection containing elements to be removed from this list * @return {@code true} if this list changed as a result of the call * @throws ClassCastException if the class of an element of this list * is incompatible with the specified collection * (optional) * @throws NullPointerException if this list contains a null element and the * specified collection does not permit null elements * (optional), * or if the specified collection is null * @see Collection#contains(Object) */ public boolean removeAll(Collection> c) { Objects.requireNonNull(c); return batchRemove(c, false); } /** * Retains only the elements in this list that are contained in the * specified collection. In other words, removes from this list all * of its elements that are not contained in the specified collection. * * @param c collection containing elements to be retained in this list * @return {@code true} if this list changed as a result of the call * @throws ClassCastException if the class of an element of this list * is incompatible with the specified collection * (optional) * @throws NullPointerException if this list contains a null element and the * specified collection does not permit null elements * (optional), * or if the specified collection is null * @see Collection#contains(Object) */ public boolean retainAll(Collection> c) { Objects.requireNonNull(c); return batchRemove(c, true); } private boolean batchRemove(Collection> c, boolean complement) { final Object[] elementData = this.elementData; int r = 0, w = 0; boolean modified = false; try { for (; r ) if (c.contains(elementData[r]) == complement) elementData[w++] = elementData[r]; } finally { // Preserve behavioral compatibility with AbstractCollection, // even if c.contains() throws. if (r != size) { System.arraycopy(elementData, r, elementData, w, size - r); w += size - r; } if (w != size) { // clear to let GC do its work for (int i = w; i ) elementData[i] = null; modCount += size - w; size = w; modified = true; } } return modified; } /** * Save the state of the ArrayList instance to a stream (that * is, serialize it). * * @serialData The length of the array backing the ArrayList * instance is emitted (int), followed by all of its elements * (each an Object) in the proper order. */ private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException{ // Write out element count, and any hidden stuff int expectedModCount = modCount; s.defaultWriteObject(); // Write out size as capacity for behavioural compatibility with clone() s.writeInt(size); // Write out all elements in the proper order. for (int i=0; i) { s.writeObject(elementData[i]); } if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } } /** * Reconstitute the ArrayList instance from a stream (that is, * deserialize it). */ private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { elementData = EMPTY_ELEMENTDATA; // Read in size, and any hidden stuff s.defaultReadObject(); // Read in capacity s.readInt(); // ignored if (size > 0) { // be like clone(), allocate array based upon size not capacity int capacity = calculateCapacity(elementData, size); SharedSecrets.getJavaOISAccess().checkArray(s, Object[].class, capacity); ensureCapacityInternal(size); Object[] a = elementData; // Read in all elements in the proper order. for (int i=0; i) { a[i] = s.readObject(); } } } /** * Returns a list iterator over the elements in this list (in proper * sequence), starting at the specified position in the list. * The specified index indicates the first element that would be * returned by an initial call to {@link ListIterator#next next}. * An initial call to {@link ListIterator#previous previous} would * return the element with the specified index minus one. * *

The returned list iterator is fail-fast. * *

@throws IndexOutOfBoundsException {@inheritDoc} */ public ListIterator listIterator(int index) { if (index size) throw new IndexOutOfBoundsException("Index: "+index); return new ListItr(index); } /** * Returns a list iterator over the elements in this list (in proper * sequence). * *

The returned list iterator is fail-fast. * *

@see #listIterator(int) */ public ListIterator listIterator() { return new ListItr(0); } /** * Returns an iterator over the elements in this list in proper sequence. * *

The returned iterator is fail-fast. * *

@return an iterator over the elements in this list in proper sequence */ public Iterator iterator() { return new Itr(); } /** * An optimized version of AbstractList.Itr */ private class Itr implements Iterator { int cursor; // index of next element to return int lastRet = -1; // index of last element returned; -1 if no such int expectedModCount = modCount; public boolean hasNext() { return cursor != size; } @SuppressWarnings("unchecked") public E next() { checkForComodification(); int i = cursor; if (i >= size) throw new NoSuchElementException(); Object[] elementData = ArrayList.this.elementData; if (i >= elementData.length) throw new ConcurrentModificationException(); cursor = i + 1; return (E) elementData[lastRet = i]; } public void remove() { if (lastRet ) throw new IllegalStateException(); checkForComodification(); try { ArrayList.this.remove(lastRet); cursor = lastRet; lastRet = -1; expectedModCount = modCount; } catch (IndexOutOfBoundsException ex) { throw new ConcurrentModificationException(); } } @Override @SuppressWarnings("unchecked") public void forEachRemaining(Consumer super E> consumer) { Objects.requireNonNull(consumer); final int size = ArrayList.this.size; int i = cursor; if (i >= size) { return; } final Object[] elementData = ArrayList.this.elementData; if (i >= elementData.length) { throw new ConcurrentModificationException(); } while (i != size && modCount == expectedModCount) { consumer.accept((E) elementData[i++]); } // update once at end of iteration to reduce heap write traffic cursor = i; lastRet = i - 1; checkForComodification(); } final void checkForComodification() { if (modCount != expectedModCount) throw new ConcurrentModificationException(); } } /** * An optimized version of AbstractList.ListItr */ private class ListItr extends Itr implements ListIterator { ListItr(int index) { super(); cursor = index; } public boolean hasPrevious() { return cursor != 0; } public int nextIndex() { return cursor; } public int previousIndex() { return cursor - 1; } @SuppressWarnings("unchecked") public E previous() { checkForComodification(); int i = cursor - 1; if (i ) throw new NoSuchElementException(); Object[] elementData = ArrayList.this.elementData; if (i >= elementData.length) throw new ConcurrentModificationException(); cursor = i; return (E) elementData[lastRet = i]; } public void set(E e) { if (lastRet ) throw new IllegalStateException(); checkForComodification(); try { ArrayList.this.set(lastRet, e); } catch (IndexOutOfBoundsException ex) { throw new ConcurrentModificationException(); } } public void add(E e) { checkForComodification(); try { int i = cursor; ArrayList.this.add(i, e); cursor = i + 1; lastRet = -1; expectedModCount = modCount; } catch (IndexOutOfBoundsException ex) { throw new ConcurrentModificationException(); } } } /** * Returns a view of the portion of this list between the specified * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive. (If * {@code fromIndex} and {@code toIndex} are equal, the returned list is * empty.) The returned list is backed by this list, so non-structural * changes in the returned list are reflected in this list, and vice-versa. * The returned list supports all of the optional list operations.


评论


亲,登录后才可以留言!